Advertisements
Advertisements
प्रश्न
यदि एक मीनार की छाया की लंबाई बढ़ रही है, तो सूर्य का उन्नयन कोण भी बढ़ रहा है।
पर्याय
सत्य
असत्य
उत्तर
यह कथन असत्य है।
स्पष्टीकरण:
इस प्रश्न के तथ्य को समझने के लिए निम्नलिखित उदाहरण पर विचार करें
I. एक टावर `2sqrt(3)` मीटर ऊंचे की छाया जमीन पर 2 मीटर लंबी पड़ती है, तो सूर्य की ऊंचाई 60° है।
ΔACB में,
tan θ = `"AB"/"BC" = (2sqrt(3))/2`
⇒ tan θ = `sqrt(3)` = tan 60°
∴ θ = 60°
II. टावर की समान ऊंचाई पिछले बिंदु से 4 मीटर अधिक छाया बनाती है, तो सूर्य की ऊंचाई 30° है।
ΔAPB में,
tan θ = `"AB"/"PB" = "AB"/("PC" + "CB")`
⇒ tan θ = `(2sqrt(3))/(4 + 2) = (2sqrt(3))/6`
⇒ tan θ = `sqrt(3)/3 * sqrt(3)/sqrt(3) = 3/(3sqrt(3)`
⇒ tan θ = `1/sqrt(3)` = tan 30°
∴ θ = 30°
अतः, उपरोक्त दो उदाहरणों से हम यह निष्कर्ष निकालते हैं कि यदि किसी मीनार की छाया की लंबाई बढ़ रही है, तो सूर्य का उन्नयन कोण कम हो रहा है।
APPEARS IN
संबंधित प्रश्न
भूमि के एक बिंदु से, जो मीनार के पाद-बिंदु से 30 मीटर की दूरी पर है, मीनार के शिखर का उन्नयन कोण 30° है। मीनार की ऊँचाई ज्ञात कीजिए।
एक नहर के एक तट पर एक टीवी टॉवर ऊध्वार्रधरत: खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण 60° है। इसी तट पर इस बिंदु से 20 m दूर और इस बिंदु को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टॉवर के शिखर का अन्नयन कोण 30° है। (आकृति देखिए) टॉवर की ऊँचाई और नहर की चौड़ाई ज्ञात कीजिए।
मीनार के आधार से और एक सरल रेखा में 4 m और 9 m की दूरी पर स्थित दो बिंदुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए की मीनार की ऊँचाई 6 m है।
सूर्य का उस समय उन्नयन कोण ज्ञात कीजिए, जब h मीटर ऊँचे एक खंभे की छाया की लंबाई `sqrt(3)` h मीटर है।
15 मीटर लंबी एक सीढ़ी एक ऊर्ध्वाधर दीवार के ठीक ऊपरी सिरे पर पहुँच पाती है। यदि सीढ़ी इस समय दीवार से 60° का कोण बनाती है, तो दीवार की ऊँचाई ज्ञात कीजिए।
1.5 मीटर ऊँचाई वाला एक प्रेक्षक 22 मीटर ऊँची एक मीनार से 20.5 मीटर की दूरी पर खड़ा है। प्रेक्षक की आँख से मीनार की चोटी का उन्नयन कोण निर्धारित कीजिए।
किसी मीनार के आधार से s और t की दूरियों पर स्थित दो बिंदुओं से मीनार की चोटी के उन्नयन कोण परस्पर पूरक हैं। सिद्ध कीजिए कि मीनार की ऊँचाई `sqrt(st)` है।
एक ऊर्ध्वाधर मीनार एक क्षैतिज समतल पर खड़ी है तथा उस पर h ऊँचाई का एक ऊर्ध्वाधर ध्वज-दंड लगा हुआ है। समतल के किसी बिंदु से ध्वज-दंड के निचले और ऊपरी सिरों के उन्नयन कोण क्रमश : α और β हैं। सिद्ध कीजिए कि मीनार की ऊँचाई `((h tan alpha)/(tan beta - tan alpha))` है।
किसी ऊर्ध्वाधर मीनार की चोटी का भूमि पर स्थित किसी बिंदु से उन्नयन कोण 60° है। पहले बिंदु से 10 m उर्ध्वाधरत: ऊपर एक अन्य बिंदु पर उसका उन्नयन कोण 45° है। मीनार की उँचाई ज्ञात कीजिए।
किसी मकान की खिड़की भूमि से h m की ऊँचाई पर है। इस खिड़की से, सड़क के दूसरी ओर स्थित एक अन्य मकान के शिखर और आधार के क्रमशः उन्नयन और अवनमन कोण α और β पाए जाते हैं। सिद्ध कीजिए कि दूसरे मकान की ऊँचाई h(1 + tan α cot β) मीटर है।