मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

P a Spherical Ball of Mass M and Radius R Rolls Without Slipping on a Rough Concave Surface of Large Radius R. It Makes Small Oscillations About the Lowest Point. Find the Time Period. - Physics

Advertisements
Advertisements

प्रश्न

A spherical ball of mass m and radius r rolls without slipping on a rough concave surface of large radius R. It makes small oscillations about the lowest point. Find the time period.

बेरीज

उत्तर

Let ω be the angular velocity of the system about the point of suspension at any time.
Velocity of the ball rolling on a rough concave surface \[\left( v_C \right)\]  is given by,
vc = (R − r)ω 
Also, vc = rω1  
where ω1 is the rotational velocity of the sphere.

\[\Rightarrow  \omega_1  = \frac{v_c}{r} = \left( \frac{R - r}{r} \right)\omega                        \cdots\left( 1 \right)\]

As total energy of a particle in S.H.M. remains constant,

\[mg\left( R - r \right)  \left( 1 - \cos  \theta \right) + \frac{1}{2}m v_c^2  + \frac{1}{2}I \omega_1^2  = constant\] \[\text { Substituting  the  values  of   v_c   and }  \omega_1   \text { in  the  above  equation,   we  get: }\] \[mg  \left( R - r \right)  \left( 1 - \cos  \theta \right) + \frac{1}{2}m \left( R - r \right)^2    \omega^2  + \frac{1}{2}m r^2 \left( \frac{R - r}{r} \right) \omega^2  = \text { constant }       \left( \because I  = m r^2 \right)\] \[mg\left( R - r \right)  \left( 1 - \cos  \theta \right) + \frac{1}{2}m \left( R - r \right)^2    \omega^2  + \frac{1}{5}m r^2   \left( \frac{R - r}{r} \right) \omega^2  = \text { constant }\]\[ \Rightarrow g\left( R - r \right)  \left( 1 - \cos  \theta \right) +  \left( R - r \right)^2  \omega^2   \left[ \frac{1}{2} + \frac{1}{5} \right] = \text { constant }\]

Taking derivative on both sides, we get:

\[\text {g}\left( \text{R - r} \right)\text { sin }\theta\frac{\text{d}\theta}{\text{dt}} = \frac{7}{10} \left(\text{ R - r }\right)^2 2\omega\frac{d\omega}{\text{dt}}\] 

\[ \Rightarrow \text { g sin }\theta = 2 \times \left( \frac{7}{10} \right)\left(\text{ R - r }\right)\alpha    \left( \because a = \frac{\text{d}\omega}{\text{dt}} \right)\] 

\[ \Rightarrow \text{ g sin}\theta = \left( \frac{7}{5} \right)\left( \text{R - r} \right)\alpha\] 

\[ \Rightarrow \alpha = \frac{5\text{g sin }\theta}{7\left( \text{R - r} \right)}\] 

\[ = \frac{\text{5g}\theta}{7\left(\text{ R - r }\right)}\] 

\[ \therefore \frac{\alpha}{\theta} =  \omega^2  = \frac{\text{5g}}{7\left( \text{R - r} \right)} = \text { constant }\]

Therefore, the motion is S.H.M.

\[\omega = \sqrt{\frac{5g}{7\left( R - r \right)}}\] 

\[\text { Time  period  is  given  by, } \] 

\[ \Rightarrow T = 2\pi\sqrt{\frac{7\left( R - r \right)}{5g}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Simple Harmonics Motion - Exercise [पृष्ठ २५५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 12 Simple Harmonics Motion
Exercise | Q 39 | पृष्ठ २५५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Define phase of S.H.M.


Can the potential energy in a simple harmonic motion be negative? Will it be so if we choose zero potential energy at some point other than the mean position?


A block of known mass is suspended from a fixed support through a light spring. Can you find the time period of vertical oscillation only by measuring the extension of the spring when the block is in equilibrium?


The displacement of a particle is given by \[\overrightarrow{r} = A\left( \overrightarrow{i} \cos\omega t + \overrightarrow{j} \sin\omega t \right) .\] The motion of the particle is

 

A particle moves in a circular path with a continuously increasing speed. Its motion is


Which of the following quantities are always negative in a simple harmonic motion?

(a) \[\vec{F} . \vec{a} .\]

(b) \[\vec{v} . \vec{r} .\]

(c) \[\vec{a} . \vec{r} .\]

(d)\[\vec{F} . \vec{r} .\]


For a particle executing simple harmonic motion, the acceleration is proportional to


A particle moves in the X-Y plane according to the equation \[\overrightarrow{r} = \left( \overrightarrow{i} + 2 \overrightarrow{j} \right)A\cos\omega t .\] 

The motion of the particle is
(a) on a straight line
(b) on an ellipse
(c) periodic
(d) simple harmonic


The pendulum of a certain clock has time period 2.04 s. How fast or slow does the clock run during 24 hours?


A uniform rod of length l is suspended by an end and is made to undergo small oscillations. Find the length of the simple pendulum having the time period equal to that of the road.


Three simple harmonic motions of equal amplitude A and equal time periods in the same direction combine. The phase of the second motion is 60° ahead of the first and the phase of the third motion is 60° ahead of the second. Find the amplitude of the resultant motion.


In a simple harmonic oscillation, the acceleration against displacement for one complete oscillation will be __________.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


Define the time period of simple harmonic motion.


Define the frequency of simple harmonic motion.


Describe Simple Harmonic Motion as a projection of uniform circular motion.


Consider the Earth as a homogeneous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple harmonic motion such that its time period is

T = `2π sqrt("R"/"g")`


Motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lower point is ______.

  1. simple harmonic motion.
  2. non-periodic motion.
  3. periodic motion.
  4. periodic but not S.H.M.

Which of the following expressions corresponds to simple harmonic motion along a straight line, where x is the displacement and a, b, and c are positive constants?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×