मराठी

Point P(X, 4) Lies on the Line Segment Joining the Points A(−5, 8) and B(4, −10). Find the Ratio in Which Point P Divides the Line Segment Ab. Also Find the Value of X. - Mathematics

Advertisements
Advertisements

प्रश्न

Point P(x, 4) lies on the line segment joining the points A(−5, 8) and B(4, −10). Find the ratio in which point P divides the line segment AB. Also find the value of x.

उत्तर

Let point P (x, 4) divide line segment AB in the ratio K:1.

Coordinates of A = (−5, 8)

Coordinates of B = (4, −10)

On using section formula, we obtain

`(x,4)=((kxx4+1xx(-5))/(k+1))((kxx(-10)+1xx8)/(k+1))`

`(x,4)=((4k-5)/(k+1),(-10k+8)/(k+1))`

`rArr(4k-5)/(k+1)=x`........................(1)

`and (-10k+8)/(k+1)=4..................(2)

From equation (2):

− 10K + 8 = 4(K + 1)

⇒ − 10K + 8 = 4K + 4

⇒ 14K = 4

`rArr K =2/7`

Thus, point P divides AB in the ratio `2/7 : ie ., 2:7.`

From equation (1):

`(4xx2/7-5)/(2/7+1)=x`

`(-27/7)/(9/7)=x`

`x=-3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2010-2011 (March) All india set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

On which axis do the following points lie?

Q(0, -2)


On which axis do the following points lie?

R(−4,0)


Find the value of k, if the point P (0, 2) is equidistant from (3, k) and (k, 5).


If G be the centroid of a triangle ABC, prove that:

AB2 + BC2 + CA2 = 3 (GA2 + GB2 + GC2)


Find a point on y-axis which is equidistant from the points (5, -2) and (-3, 2).


Three consecutive vertices of a parallelogram are (-2,-1), (1, 0) and (4, 3). Find the fourth vertex.


If the poin A(0,2)  is equidistant form the points B (3, p) and  C (p ,5) find the value of p. Also, find the length of AB.


Show that the points A(6,1), B(8,2), C(9,4) and D(7,3) are the vertices of a rhombus. Find its area.


The midpoint of the line segment joining A (2a, 4) and B (-2, 3b) is C (1, 2a+1). Find the values of a and b.


Find the area of a quadrilateral ABCD whose vertices area A(3, -1), B(9, -5) C(14, 0) and D(9, 19).


Find the centroid of ΔABC  whose vertices are A(2,2) , B (-4,-4) and C (5,-8).


Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?


Show that A (−3, 2), B (−5, −5), (2,−3), and D (4, 4) are the vertices of a rhombus.

 

In  \[∆\] ABC , the coordinates of vertex A are (0, - 1) and D (1,0) and E(0,10)  respectively the mid-points of the sides AB and AC . If F is the mid-points of the side BC , find the area of \[∆\] DEF.


Write the coordinates the reflections of points (3, 5) in X and Y -axes.

 

If P (2, 6) is the mid-point of the line segment joining A(6, 5) and B(4, y), find y. 


What is the distance between the points A (c, 0) and B (0, −c)?

 

If the distance between the points (4, p) and (1, 0) is 5, then p = 


If the centroid of the triangle formed by the points (3, −5), (−7, 4), (10, −k) is at the point (k −1), then k =


Distance of the point (6, 5) from the y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×