मराठी

Radii of Two Circles Are 6.3 Cm and 3.6 Cm. State the Distance Between Their Centers If - - Mathematics

Advertisements
Advertisements

प्रश्न

Radii of two circles are 6.3 cm and 3.6 cm. State the distance between their centers if -

they touch each other internally.

एका वाक्यात उत्तर

उत्तर

Radius of bigger circle = 6.3 cm

and of smaller circle = 3.6 cm

Two circles are touching each other at P internally. O and O’ are the centers of the circles. Join OP and O’P

OP = 6.3 cm, O’P = 3.6 cm

OO’ = OP - O’P = 6.3 - 3.6 = 2.7 cm

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Tangents and Intersecting Chords - Exercise 18 (A) [पृष्ठ २७५]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 18 Tangents and Intersecting Chords
Exercise 18 (A) | Q 11.2 | पृष्ठ २७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In the given figure, two circles touch each other externally at point P. AB is the direct common tangent of these circles. Prove that :

  1. tangent at point P bisects AB,
  2. angles APB = 90°.

In the given figure, two circles touch each other externally at point P. AB is the direct common tangent of these circles. Prove that: 

(ii) angles APB = 90°

 


Two parallel tangents of a circle meet a third tangent at points P and Q. Prove that PQ subtends a right angle at the centre.


Two circles touch each other internally at a point P. A chord AB of the bigger circle intersects the other circle in C and D. Prove that ∠CPA = ∠DPB.


Two circles intersect each other at points A and B. A straight line PAQ cuts the circles at P and Q. If the tangents at P and Q intersect at point T; show that the points P, B, Q and T are concyclic.


Two circles intersect each other at points A and B. Their common tangent touches the circles at points P and Q as shown in the figure. Show that the angles PAQ and PBQ are supplementary.


Radius of a sector of a circle is 21 cm. If length of arc of that sector is 55 cm, find the area of the sector.


Two circles with centres O and P intersect each other at A and B as shown in following fig. Two straight lines MAN and RBQ are drawn parallel to OP.
Prove that (i) MN = 20 P (ii) MN= RQ.


Two circles of radii 5cm and 3cm with centres O and P touch each other internally. If the perpendicular bisector of the line segment OP meets the circumference of the larger circle at A and B, find the length of AB.


Two circles with centres O and O' touch each other at point L. Prove that, a tangent through L bisects the common tangent AB of the two circles at point M.


Given: AB is a common tangent of the two circles that touch each other at point L. ML is a tangent through point L.

To prove: M is a mid-point of the tangent AB or MA = MB.

Proof: From the figure,

M is an external point that draws two tangents, MA and ML to the circle with the centre O.

So, `square` = `square`  ......(i)

Similarly, M draws two tangents ML and MB to the circle with the centre O'.

So, `square` = `square`  ......(ii)

From the equations (i) and (ii),

`square` = `square`

Hence, the tangent at the point L, bisects the common tangent, AB of the two circles at point M.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×