Advertisements
Advertisements
प्रश्न
Two circles intersect each other at points A and B. Their common tangent touches the circles at points P and Q as shown in the figure. Show that the angles PAQ and PBQ are supplementary.
उत्तर
Join AB.
PQ is the tangent and AB is a chord
∴ ∠QPA = ∠PBA ...(i) (Angles in alternate segment)
Similarly,
∠PQA = ∠QBA ...(ii)
Adding (i) and (ii)
∠QPA + ∠PQA = ∠PBA + ∠QBA
But, in ΔPAQ,
∠QPA + ∠PQA = 180° – ∠PAQ ...(iii)
And ∠PBA + ∠QBA = ∠PBQ ...(iv)
From (iii) and (iv)
∠PBQ = 180° – ∠PAQ
`=>` ∠PBQ + ∠PAQ = 180°
`=>` ∠PBQ + ∠PBQ = 180°
Hence ∠PAQ and ∠PBQ are supplementary.
APPEARS IN
संबंधित प्रश्न
Radii of two circles are 6.3 cm and 3.6 cm. State the distance between their centres if:
- they touch each other externally,
- they touch each other internally.
In the given figure, two circles touch each other externally at point P. AB is the direct common tangent of these circles. Prove that:
(ii) angles APB = 90°
Two circles intersect each other at points A and B. A straight line PAQ cuts the circles at P and Q. If the tangents at P and Q intersect at point T; show that the points P, B, Q and T are concyclic.
In the given figure; ABC, AEQ and CEP are straight lines. Show that ∠APE and ∠CQE are supplementary.
Radius of a sector of a circle is 21 cm. If length of arc of that sector is 55 cm, find the area of the sector.
Two circles intersect each other at points C and D. Their common tangent AB touches the circles at point A and B. Prove that :
∠ ADB + ∠ ACB = 180°
Two circles intersect each other at points P and Q. Secants drawn through P and Q intersect the circles at points A,B and D,C. Prove that : ∠ADC + ∠BCD = 180°
Two circles with centres O and P intersect each other at A and B as shown in following fig. Two straight lines MAN and RBQ are drawn parallel to OP.
Prove that (i) MN = 20 P (ii) MN= RQ.
Two circles of radii 5cm and 3cm with centres O and P touch each other internally. If the perpendicular bisector of the line segment OP meets the circumference of the larger circle at A and B, find the length of AB.
P and Q are the centre of circles of radius 9 cm and 2 cm respectively; PQ = 17 cm. R is the centre of circle of radius x cm, which touches the above circles externally, given that ∠ PRQ = 90°. Write an equation in x and solve it.