Advertisements
Advertisements
प्रश्न
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
पर्याय
`(1 + n)/(2 - n) tan alpha`
`(1 - n)/(1 + n) tan alpha`
tan α
`(1 + n)/(1 - n) tan alpha`
उत्तर
`(1 + n)/(1 - n) tan alpha`
Explanation:
`(sin(theta + 2alpha))/sintheta = 1/n`
∴ `(sin(theta + 2alpha) + sintheta)/(sin(theta + 2alpha) - sintheta) = (1 + n)/(1 - n)`
∴ `(2sin(theta + alpha)cos alpha)/(2cos(theta + alpha)sin alpha) =(1 + n)/(1 - n)`
∴ `tan (theta + alpha) = (1 + n)/(1 - n) tan alpha`
APPEARS IN
संबंधित प्रश्न
Find the value of:
sin 15°
Find the values of:
cot 225°
Find the value of :
sin (495°)
Find the value of :
cos 315°
Find the value of :
cos (600°)
Find the value of :
tan 225°
Find the value of :
tan (– 690°)
Find the value of :
sec (– 855°)
Find the value of :
cosec 780°
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
Select the correct option from the given alternatives :
Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Prove the following:
sin47° + sin61° − sin11° − sin25° = cos7°
If a = sin 175°+ cos 175°, then ______.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
The value of sin(– 1125°) is ______.
The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3 "cosec"(π/6)` is ______.
Find the value of `cos ((29 π)/3)`.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
If `sin A - sqrt(6) cos A = sqrt(7) cos A`, then `cos A + sqrt(6) sin A` is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.