Advertisements
Advertisements
प्रश्न
Prove the following:
`tan pi/8 = sqrt(2) - 1`
उत्तर
We know that,
tan 2θ = `(2tantheta)/(1 - tan^2theta)`
By putting θ = `pi/8`, we get
`tan pi/4 = (2tan pi/8)/(1 - tan^2 pi/8)`
Let `tan pi/8` = x.
Then 1 = `(2x)/(1 - x^2)`
∴ 1 – x2 = 2x
∴ x2 + 2x – 1 = 0
∴ x = `(-2 ± sqrt(4 - 4(1)(-1)))/(2 xx 1)`
= `(-2 ± sqrt(8))/2`
= `(-2 ± 2sqrt(2))/2`
= `-1 ± sqrt(2)`
Since `pi/8` lies in the first quadrant, x = `tan pi/8` is positive.
∴ `tan pi/8 = sqrt(2) - 1`.
APPEARS IN
संबंधित प्रश्न
Find the value of:
sin 15°
Find the values of:
tan 105°
Find the value of :
cos 315°
Find the value of :
cos (600°)
Find the value of :
sec 240°
Find the value of :
cosec 780°
Find the value of :
cot (– 1110°)
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Select the correct option from the given alternatives :
Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______
Prove the following:
sin47° + sin61° − sin11° − sin25° = cos7°
If a = sin 175°+ cos 175°, then ______.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
The value of `cos((41π)/4)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3 "cosec"(π/6)` is ______.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
The value of cos 480° sin 150° + sin 600° cos 390° is ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
If `sin A - sqrt(6) cos A = sqrt(7) cos A`, then `cos A + sqrt(6) sin A` is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.