Advertisements
Advertisements
प्रश्न
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
उत्तर
L.H.S. = `(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 (- x))`
= `([sin(pi + x)]^3 [sec(pi - x)]^2 tan(2pi - x))/([cos(pi/2 + x)]^2 sin(pi - x)*(-"cosec")^2`
= `((-sinx)^3(-secx)^2(-tanx))/((-sinx)^2*sinx*"cosec"^2x)`
= `((-sin^3x)*sec^2x*(-tanx))/(sin^2x*sinx*1/sin^2x)`
= `(sin^3x*sec^2x*tanx)/sinx`
= `sin^2x*1/cos^2x tanx`
= tan2x.tanx
= tan3x
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the values of:
cot 225°
Find the value of :
sin 690°
Find the value of :
sin (495°)
Find the value of :
cos 315°
Find the value of :
cos (600°)
Find the value of :
tan 225°
Find the value of :
sec 240°
Find the value of :
sec (– 855°)
Find the value of :
cot (– 1110°)
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Prove the following:
tan6° tan42° tan66° tan78° = 1
Prove the following:
sin47° + sin61° − sin11° − sin25° = cos7°
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.
The value of sin(– 1125°) is ______.
The value of `sin((25π)/3)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3 "cosec"(π/6)` is ______.
Find the value of `cos ((29 π)/3)`.
If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
The value of cos 480° sin 150° + sin 600° cos 390° is ______.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of sin 930° is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.