Advertisements
Advertisements
प्रश्न
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
उत्तर
sec 840° = sec (720° + 120°)
= sec (2 x 360° + 120°)
= sec (120°)
= sec (90° + 30°)
= – cosec 30°
= – 2
cot (– 945°) = – cot 945°
= – cot (720° + 225°)
= – cot (2 x 360° + 225°)
= – cot (225°)
= – cot (180° + 45°)
= – cot 45°
= – 1
sin 600° = sin (360° + 240°)
= sin (240°)
= sin (180° + 60°)
= – sin 60°
= `-sqrt(3)/2`
tan (– 690°) = – tan 690°
= – tan (360° + 330°)
= – tan (330°)
= – tan (360° – 30°)
= – (– tan – 30°)
= tan 30°
= `1/sqrt(3)`
L.H.S. = sec 840° cot (– 945°) + sin 600° tan (– 690°)
= `(-2) (-1) + (-sqrt(3)/2)(1/sqrt(3))`
= `2 - 1/2`
= `3/2`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the value of:
sin 15°
Find the values of:
tan 105°
Find the values of:
cot 225°
Find the value of :
sin (495°)
Find the value of :
cos (600°)
Find the value of :
tan 225°
Find the value of :
tan (– 690°)
Find the value of :
sec 240°
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Prove the following:
cosθ + sin (270° + θ) − sin (270° − θ) + cos (180° + θ) = 0
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
If a = sin 175°+ cos 175°, then ______.
The value of sin 495° is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
The value of cos 480° sin 150° + sin 600° cos 390° is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of cos(– 870°) is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.