English

Prove the following: sec 840° . cot (– 945°) + sin 600° tan (– 690°) = 32 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`

Sum

Solution

sec 840° = sec (720° + 120°)

= sec (2 x 360° + 120°)

= sec (120°)

= sec (90° + 30°)

= – cosec 30°

= – 2

cot (– 945°) = – cot 945°

= – cot (720° + 225°)

= – cot (2 x 360° + 225°)

= – cot (225°)

= – cot (180° + 45°)

= – cot 45°

= – 1

sin 600° = sin (360° + 240°)

= sin (240°)

= sin (180° + 60°)

= – sin 60°

= `-sqrt(3)/2`

tan (– 690°) = – tan 690°

= – tan (360° + 330°)

= – tan (330°)

= – tan (360° – 30°)

= – (– tan – 30°)

= tan 30°

= `1/sqrt(3)`

L.H.S. = sec 840° cot (– 945°) + sin 600° tan (– 690°)

= `(-2) (-1) + (-sqrt(3)/2)(1/sqrt(3))`

= `2 - 1/2`

= `3/2`

= R.H.S.

shaalaa.com
Trigonometric Functions of Allied Angels
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Exercise 3.2 [Page 42]

APPEARS IN

RELATED QUESTIONS

Find the value of :

sin 690°


Find the value of :

sin (495°)


Find the value of :

tan 225°


Find the value of :

sec 240°


Find the value of :

cosec 780°


Prove the following:

`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x


Prove the following:

`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1


Prove the following:

`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x


Prove the following:

sin 20° sin 40° sin 80° = `sqrt(3)/8`


Prove the following:

sin 18° = `(sqrt(5) - 1)/4`


Prove the following:

cos 36° = `(sqrt(5) + 1)/4`


Prove the following:

sin 36° = `(sqrt(10 - 2sqrt(5)))/4`


Prove the following:

`tan  pi/8 = sqrt(2) - 1`


Prove the following:

tan6° tan42° tan66° tan78° = 1


Prove the following:

sin47° + sin61° − sin11° − sin25° = cos7°


If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.


`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.


The value of sin(– 1125°) is ______.


The value of `cos((41π)/4)` is ______.


The value of `cos  π/8 + cos  (3π)/8 + cos  (5π)/8 + cos  (7π)/8` is ______.


The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3  "cosec"(π/6)` is ______.


If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.


The value of `cos^2  π/16 + cos^2  (3π)/16 + cos^2  (5π)/16 + cos^2  (7π)/16` is ______.


sin2 17.5° + sin2 72.5° is equal to ______.


cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.


If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.


The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.


The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.


The value of sin 135° cosec 225° tan 150° cot 315° is ______.


The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).


The value of sin 150° cos 120° + cos 330° sin 660° is ______.


The value of `2 sin^2  π/6 + "cosec"^2  (7π)/6 cos^2  π/3` is ______.


cos 1°. cos 2°. cos 3° ...... cos 179° = ______.


sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×