Advertisements
Advertisements
Question
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
Solution
Let θ = 18°
∴ 5θ = 90°
∴ 2θ + 3θ = 90°
∴ 2θ = 90° – 3θ
∴ sin 2θ = sin (90° – 3θ)
∴ sin 2θ = cos 3θ
∴ 2 sin θ cos θ = 4 cos3θ – 3 cos θ
∴ 2 sin θ = 4 cos2θ – 3 ...[∵ cos θ ≠ 0]
∴ 2 sin θ = 4 (1 – sin2θ) – 3
∴ 2 sin θ = 1 – 4 sin2θ
∴ 4 sin2θ + 2 sin θ – 1 = 0
∴ sin θ = `(-2 ± sqrt(4 + 16))/8`
= `(-2 ± 2sqrt(5))/8`
= `(-1 ± sqrt(5))/4`
Since, sin 18° > 0
∴ sin 18° = `(sqrt(5) - 1)/4`
∴ cos218° = 1 – sin218°
= `1 - ((sqrt(5) - 1)/4)^2`
= `1 - ((5 - 2sqrt(5) + 1)/16)`
= `(16 - 5 + 2sqrt(5) - 1)/16`
= `(10 + 2sqrt(5))/16`
∴ cos 18° = `sqrt(10 + 2sqrt(5))/4` ...[∵ 18° is an acute angle]
∴ sin 36° = 2 sin 18° · cos 18°
= `2 xx (sqrt(5) - 1)/4 xx sqrt(10 + 2sqrt(5))/4`
= `(sqrt((sqrt(5) - 1)^2) xx sqrt(10 + 2sqrt(5)))/8`
= `sqrt((6 - 2sqrt(5))(10 + 2sqrt(5)))/8`
= `(sqrt(60 + 12sqrt(5) - 20sqrt(5) - 20))/8`
= `sqrt(40 - 8sqrt(5))/8`
= `(2sqrt(10 - 2sqrt(5)))/8`
∴ sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
APPEARS IN
RELATED QUESTIONS
Find the values of:
cos 75°
Find the value of :
sin (495°)
Find the value of :
tan 225°
Find the value of :
tan (– 690°)
Find the value of :
cot (– 1110°)
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
Prove the following:
cosθ + sin (270° + θ) − sin (270° − θ) + cos (180° + θ) = 0
Select the correct option from the given alternatives :
Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
tan6° tan42° tan66° tan78° = 1
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
The value of sin 495° is ______.
The value of sin(– 1125°) is ______.
The value of `sin((25π)/3)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
Find the value of `cos ((29 π)/3)`.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
If `sin A - sqrt(6) cos A = sqrt(7) cos A`, then `cos A + sqrt(6) sin A` is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of sin 930° is ______.
The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.