Advertisements
Advertisements
Question
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Solution
We know that,
cos 2θ = 1 – 2sin2θ
cos 36° = cos 2(18°) = 1 – 2 sin218°
= `1 - 2((sqrt(5) - 1)/4)^2`
= `(8 - (5 + 1 - 2sqrt(5)))/8`
= `(8 - (6 - 2sqrt(5)))/8`
= `(2 + 2sqrt(5))/8`
∴ cos 36° = `(sqrt(5) + 1)/4`
APPEARS IN
RELATED QUESTIONS
Find the values of:
tan 105°
Find the value of :
cos 315°
Find the value of :
sec 240°
Find the value of :
cot (– 1110°)
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
cosθ + sin (270° + θ) − sin (270° − θ) + cos (180° + θ) = 0
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
Select the correct option from the given alternatives :
Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
Prove the following:
sin47° + sin61° − sin11° − sin25° = cos7°
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
The value of `cos((41π)/4)` is ______.
Find the value of `cos ((29 π)/3)`.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of sin 930° is ______.
The value of cos(– 870°) is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of sin 150° cos 120° + cos 330° sin 660° is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.