English

Prove the following: sin47° + sin61° − sin11° − sin25° = cos7° - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

sin47° + sin61° − sin11° − sin25° = cos7°

Sum

Solution

L.H.S. = sin47° + sin61° − sin11° − sin25°

= (sin47° − sin25°) + (sin61° − sin11°)

= `2cos((47^circ + 25^circ)/2)*sin ((47^circ - 25^circ)/2) + 2cos((61^circ + 11^circ)/2)*sin((61^circ - 11^circ)/2)`

= 2cos36° · sin11° + 2cos36° · sin25°

= 2cos36° (sin25° + sin11°)

= `2cos36^circ xx 2sin((25^circ + 11^circ)/2)*cos((25^circ - 11^circ)/2)`

= 4cos36° · sin18° · cos7°

= `4 xx (sqrt(5) + 1)/4 xx (sqrt(5) - 1)/4 xx cos7^circ   ...[because cos36^circ = (sqrt(5) + 1)/4, sin 18^circ = (sqrt(5) - 1)/4]`

= `(4(5 - 1))/16 cos7^circ`

= cos7°

= R.H.S.

shaalaa.com
Trigonometric Functions of Allied Angels
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Miscellaneous Exercise 3 [Page 58]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (29) | Page 58

RELATED QUESTIONS

Find the value of:

sin 15°


Find the value of :

sin 690°


Find the value of :

cos (600°)


Find the value of :

sec 240°


Find the value of :

sec (– 855°) 


Find the value of :

cosec 780°


Find the value of :

cot (– 1110°)


Prove the following:

`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1


Prove the following:

`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1


Prove the following:

`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x


Prove the following:

tan 20° tan 80° cot 50° = `sqrt(3)`


Prove the following:

sin 20° sin 40° sin 80° = `sqrt(3)/8`


Prove the following:

sin 18° = `(sqrt(5) - 1)/4`


Prove the following:

cos 36° = `(sqrt(5) + 1)/4`


Prove the following:

tan6° tan42° tan66° tan78° = 1


If a = sin 175°+ cos 175°, then ______.


If θ = `(17π)/3` then, tan θ – cot θ = ______.


The value of sin(– 1125°) is ______.


The value of `sin((25π)/3)` is ______.


The value of `cos((41π)/4)` is ______.


The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3  "cosec"(π/6)` is ______.


Find the value of `cos ((29 π)/3)`.


sin2 17.5° + sin2 72.5° is equal to ______.


If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.


In a ΔABC, if ∠A = `π/2`, then cos2 B + cos2 C is equal to ______.


If ΔABC is a right angled at C, then tan A + tan B is equal to ______.


If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.


In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.


The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.


The value of sin 930° is ______.


The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.


The value of `2 sin^2  π/6 + "cosec"^2  (7π)/6 cos^2  π/3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×