Advertisements
Advertisements
Question
Find the value of :
cosec 780°
Solution
cosec 780° = cosec (720° + 60°)
= cosec (2 x 360° + 60°)
= cosec 60°
= `2/sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Find the value of:
sin 15°
Find the values of:
cos 75°
Find the values of:
tan 105°
Find the value of :
sin (495°)
Find the value of :
tan 225°
Find the value of :
tan (– 690°)
Find the value of :
sec 240°
Find the value of :
sec (– 855°)
Find the value of :
cot (– 1110°)
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Prove the following:
cosθ + sin (270° + θ) − sin (270° − θ) + cos (180° + θ) = 0
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
If a = sin 175°+ cos 175°, then ______.
The value of sin(– 1125°) is ______.
The value of `cos((41π)/4)` is ______.
The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3 "cosec"(π/6)` is ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
In a ΔABC, if ∠A = `π/2`, then cos2 B + cos2 C is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.