Advertisements
Advertisements
Question
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Solution
L.H.S. = tan 20° tan 80° cot 50°
= tan 20° tan 80° cot (90° − 40°)
= tan 20° tan 80° tan 40°
= tan 20° tan (60° + 20°) tan (60° − 20°)
`=tan20°((tan60°+tan20°)/(1-tan60°tan20°))((tan60°-tan20°)/(1+tan60°tan20°))`
= `tan20°((sqrt3+tan20°)/(1-sqrt3tan20°))((sqrt3-tan20°)/(1+sqrt3tan20°))`
= tan 20° `[((sqrt(3))^2-tan^2 20°)/(1^2-(sqrt3tan20°)^2)]`
= tan 20° `((3-tan^2 20°)/(1-3tan^2 20°))`
= `(3tan20°-tan^3 20°)/(1-3tan^2 20°)`
= tan 3 (20°)
= tan 60°
= `sqrt3`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Find the value of:
sin 15°
Find the values of:
cos 75°
Find the value of :
sin 690°
Find the value of :
cos (600°)
Find the value of :
tan (– 690°)
Find the value of :
sec 240°
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.
The value of `sin((25π)/3)` is ______.
The value of `cos((41π)/4)` is ______.
Find the value of `cos ((29 π)/3)`.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
In a ΔABC, if ∠A = `π/2`, then cos2 B + cos2 C is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
If `sin A - sqrt(6) cos A = sqrt(7) cos A`, then `cos A + sqrt(6) sin A` is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of cos(– 870°) is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.