Advertisements
Advertisements
प्रश्न
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
उत्तर
sec 840° = sec (720° + 120°)
= sec (2 x 360° + 120°)
= sec (120°)
= sec (90° + 30°)
= – cosec 30°
= – 2
cot (– 945°) = – cot 945°
= – cot (720° + 225°)
= – cot (2 x 360° + 225°)
= – cot (225°)
= – cot (180° + 45°)
= – cot 45°
= – 1
sin 600° = sin (360° + 240°)
= sin (240°)
= sin (180° + 60°)
= – sin 60°
= `-sqrt(3)/2`
tan (– 690°) = – tan 690°
= – tan (360° + 330°)
= – tan (330°)
= – tan (360° – 30°)
= – (– tan – 30°)
= tan 30°
= `1/sqrt(3)`
L.H.S. = sec 840° cot (– 945°) + sin 600° tan (– 690°)
= `(-2) (-1) + (-sqrt(3)/2)(1/sqrt(3))`
= `2 - 1/2`
= `3/2`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the value of:
sin 15°
Find the values of:
cos 75°
Find the values of:
cot 225°
Find the value of :
cos 315°
Find the value of :
cos (600°)
Find the value of :
cosec 780°
Find the value of :
cot (– 1110°)
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Select the correct option from the given alternatives :
Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
If θ = `(17π)/3` then, tan θ – cot θ = ______.
`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
Find the value of `cos ((29 π)/3)`.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.