हिंदी

Prove the following: sec 840° . cot (– 945°) + sin 600° tan (– 690°) = 32 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following:

sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`

योग

उत्तर

sec 840° = sec (720° + 120°)

= sec (2 x 360° + 120°)

= sec (120°)

= sec (90° + 30°)

= – cosec 30°

= – 2

cot (– 945°) = – cot 945°

= – cot (720° + 225°)

= – cot (2 x 360° + 225°)

= – cot (225°)

= – cot (180° + 45°)

= – cot 45°

= – 1

sin 600° = sin (360° + 240°)

= sin (240°)

= sin (180° + 60°)

= – sin 60°

= `-sqrt(3)/2`

tan (– 690°) = – tan 690°

= – tan (360° + 330°)

= – tan (330°)

= – tan (360° – 30°)

= – (– tan – 30°)

= tan 30°

= `1/sqrt(3)`

L.H.S. = sec 840° cot (– 945°) + sin 600° tan (– 690°)

= `(-2) (-1) + (-sqrt(3)/2)(1/sqrt(3))`

= `2 - 1/2`

= `3/2`

= R.H.S.

shaalaa.com
Trigonometric Functions of Allied Angels
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - 2 - Exercise 3.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Trigonometry - 2
Exercise 3.2 | Q 2. (iii) | पृष्ठ ४२

संबंधित प्रश्न

Find the value of:

sin 15°


Find the values of:

cos 75°


Find the values of:

cot 225°


Find the value of :

cos 315°


Find the value of :

cos (600°)


Find the value of :

cosec 780°


Find the value of :

cot (– 1110°)


Prove the following:

`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x


Prove the following:

`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1


Prove the following:

`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1


Prove the following:

`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x


Select the correct option from the given alternatives :

Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______


Prove the following:

tan 20° tan 80° cot 50° = `sqrt(3)`


Prove the following:

cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0


Prove the following:

sin 20° sin 40° sin 80° = `sqrt(3)/8`


Prove the following:

sin 36° = `(sqrt(10 - 2sqrt(5)))/4`


Prove the following:

`tan  pi/8 = sqrt(2) - 1`


If θ = `(17π)/3` then, tan θ – cot θ = ______.


`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.


The value of `cos  π/8 + cos  (3π)/8 + cos  (5π)/8 + cos  (7π)/8` is ______.


Find the value of `cos ((29 π)/3)`.


If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.


cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.


If ΔABC is a right angled at C, then tan A + tan B is equal to ______.


If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.


In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.


The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.


The value of sin 135° cosec 225° tan 150° cot 315° is ______.


The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.


The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).


cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.


cos 1°. cos 2°. cos 3° ...... cos 179° = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×