Advertisements
Advertisements
प्रश्न
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
उत्तर
L.H.S. = `("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))`
= `(secx*sinx*(- cotx))/((-secx)*(-cotx)*(- sinx)`
= `(secx*sinx*cotx)/(secx*cotx*sinx)`
= 1
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the values of:
cos 75°
Find the values of:
tan 105°
Find the value of :
sin 690°
Find the value of :
sin (495°)
Find the value of :
cos (600°)
Find the value of :
tan (– 690°)
Find the value of :
cosec 780°
Find the value of :
cot (– 1110°)
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Prove the following:
tan6° tan42° tan66° tan78° = 1
The value of sin 495° is ______.
The value of `sin((25π)/3)` is ______.
Find the value of `cos ((29 π)/3)`.
If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
The value of cos 480° sin 150° + sin 600° cos 390° is ______.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
In a ΔABC, if ∠A = `π/2`, then cos2 B + cos2 C is equal to ______.
If `sin A - sqrt(6) cos A = sqrt(7) cos A`, then `cos A + sqrt(6) sin A` is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of sin 930° is ______.
The value of cos(– 870°) is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.