हिंदी

Prove the following: cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following:

cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0

योग

उत्तर

cosec 48° = cosec (90° – 42°) = sec 42°

= `1/cos42^circ`  ...(1)

cosec 192° = cosec (270° – 78°) = – sec 78°

= `-1/cos78^circ` ...(2)

cosec 384 ° = cosec (360° + 24°) = cosec 24° ...(3)

∴ cosec 48° + cosec 192°

= `1/(cos42^circ) - 1/cos78^circ` ...[By (1) and (2)]

= `(cos78^circ -  cos42^circ)/(cos78^circ*  cos42^circ)`

= `(-2 sin ((78^circ + 42^circ)/2)*sin((78^circ - 42^circ)/2))/(cos(60^circ + 18^circ)*cos(60^circ - 18^circ)`

= `(-2  sin 60^circ*  sin18^circ)/(cos^2 60^circ - sin^2 18^circ)` ...[∵ cos(A + B) · cos(A – B) = cos2A – sin2B]

= `(-2 xx sqrt(3)/2 xx (sqrt(5) - 1)/4)/((1/2)^2 - ((sqrt(5) - 1)/4)^2)   ...[because sin18^circ = (sqrt(5) - 1)/4]`

= `(-sqrt(3)/4 (sqrt(5) - 1))/(1/4 - ((5 + 1 - 2sqrt(5))/16)`

= `(-sqrt(3)(sqrt(5) - 1))/4 xx 16/(4 - 6 + 2sqrt(5)`

=  `(-sqrt(3)(sqrt(5) - 1))/4 xx 16/(2(sqrt(5) - 1))`

∴ cosec 48° + cosec 192° = `-2sqrt(3)`  ...(4)

Also, cosec 96° + cosec 384°

= cosec 96° + cosec 24°  ...[By (3)]

= `1/(sin96^circ) + 1/sin24^circ`

= `(sin24^circ +  sin96^circ)/(sin96^circ*  sin24^circ)`

= `(2sin((96^circ + 24^circ)/2)*cos((96^circ - 24^circ)/2))/(sin(60^circ + 36^circ)*sin(60^circ - 36^circ)`

= `(2  sin60^circ*  cos36^circ)/(sin^2 60^circ - sin^2 36^circ)`  ...[∵ sin(A + B) · sin(A – B) = sin2A – sin2B]

= `(2 xx sqrt(3)/2 xx (sqrt(5) + 1)/4)/((sqrt(3)/2)^2 - (sqrt(10 - 2sqrt(5))/4)^2)  ...[because cos 36^circ = (sqrt(5) + 1)/4 and sin 36^circ = sqrt(10 - 2sqrt(5))/4]`

= `(sqrt(3)/4(sqrt(5) + 1))/(3/4 - ((10 - 2sqrt(5))/16)`

= `(sqrt(3)(sqrt(5) + 1))/4 xx 16/(12 - 10 + 2sqrt(5))`

= `(sqrt(3)(sqrt(5) + 1))/4 xx 16/(2(sqrt(5) + 1)`

∴  cosec 96° + cosec 384 ° = `2sqrt(3)`  ...(5)

∴ L.H.S. = cosec 48° + cosec 96° + cosec 192° + cosec 384 °

= (cosec 48°+ cosec 192°) + (cosec 96° + cosec 384°)

= `-2sqrt(3) +  2sqrt(3)` .....[By (4) and (5)]

= 0

= R.H.S.

Alternative Method :

Consider,

cosec x + cot x =  `1/sinx + cosx/sinx`

= `(1 + cosx)/sinx`

= `(2cos^2  x/2)/(2sin  x/2 * cos  x/2)`

∴ cosec x + cot x = `cot  x/2`

∴ cosec x = `cot  x/2 - cot x`  ...(1)

Replacing x by 2x, 4x, 8x in (4), we get,

cosec 2x = cot x  – cot 2x       ...(2)

cosec 4x = cot 2x – cot 4x      ...(3)

cosec 8x = cot 4x – cot 8x      ...(4)

Adding (1), (2), (3) and (4), we get

cosec x + cosec 2x + cosec 4x + cosec 8x = `cot  x/2 - cot8x`  ...(5)

By substituting x = 48° in (5), we get,

cosec 48° + cosec 96° + cosec 192° + cosec 384°

= cot 24° – cot 384°

= cot 24° – cot (360° + 24°)

= cot 24° – cot 24°  ...[∵ cot (2π + θ) = cot θ]

∴ cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0

shaalaa.com
Trigonometric Functions of Allied Angels
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - 2 - Miscellaneous Exercise 3 [पृष्ठ ५८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (16) | पृष्ठ ५८

संबंधित प्रश्न

Find the values of:

tan 105°


Find the value of :

cos 315°


Find the value of :

cos (600°)


Find the value of :

tan (– 690°)


Find the value of :

sec 240°


Find the value of :

cosec 780°


Prove the following:

`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x


Prove the following:

`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x


Select the correct option from the given alternatives :

If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to


Prove the following:

tan 20° tan 80° cot 50° = `sqrt(3)`


Prove the following:

sin 20° sin 40° sin 80° = `sqrt(3)/8`


Prove the following:

`tan  pi/8 = sqrt(2) - 1`


Prove the following:

tan6° tan42° tan66° tan78° = 1


If a = sin 175°+ cos 175°, then ______.


If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.


The value of sin(– 1125°) is ______.


The value of `sin((25π)/3)` is ______.


If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.


The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.


The value of cos 480° sin 150° + sin 600° cos 390° is ______.


cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.


If ΔABC is a right angled at C, then tan A + tan B is equal to ______.


If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.


The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.


The value of cos(– 870°) is ______.


The value of sin 135° cosec 225° tan 150° cot 315° is ______.


The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).


The value of `2 sin^2  π/6 + "cosec"^2  (7π)/6 cos^2  π/3` is ______.


cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.


cos 1°. cos 2°. cos 3° ...... cos 179° = ______.


sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×