Advertisements
Advertisements
प्रश्न
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
उत्तर
cosec 48° = cosec (90° – 42°) = sec 42°
= `1/cos42^circ` ...(1)
cosec 192° = cosec (270° – 78°) = – sec 78°
= `-1/cos78^circ` ...(2)
cosec 384 ° = cosec (360° + 24°) = cosec 24° ...(3)
∴ cosec 48° + cosec 192°
= `1/(cos42^circ) - 1/cos78^circ` ...[By (1) and (2)]
= `(cos78^circ - cos42^circ)/(cos78^circ* cos42^circ)`
= `(-2 sin ((78^circ + 42^circ)/2)*sin((78^circ - 42^circ)/2))/(cos(60^circ + 18^circ)*cos(60^circ - 18^circ)`
= `(-2 sin 60^circ* sin18^circ)/(cos^2 60^circ - sin^2 18^circ)` ...[∵ cos(A + B) · cos(A – B) = cos2A – sin2B]
= `(-2 xx sqrt(3)/2 xx (sqrt(5) - 1)/4)/((1/2)^2 - ((sqrt(5) - 1)/4)^2) ...[because sin18^circ = (sqrt(5) - 1)/4]`
= `(-sqrt(3)/4 (sqrt(5) - 1))/(1/4 - ((5 + 1 - 2sqrt(5))/16)`
= `(-sqrt(3)(sqrt(5) - 1))/4 xx 16/(4 - 6 + 2sqrt(5)`
= `(-sqrt(3)(sqrt(5) - 1))/4 xx 16/(2(sqrt(5) - 1))`
∴ cosec 48° + cosec 192° = `-2sqrt(3)` ...(4)
Also, cosec 96° + cosec 384°
= cosec 96° + cosec 24° ...[By (3)]
= `1/(sin96^circ) + 1/sin24^circ`
= `(sin24^circ + sin96^circ)/(sin96^circ* sin24^circ)`
= `(2sin((96^circ + 24^circ)/2)*cos((96^circ - 24^circ)/2))/(sin(60^circ + 36^circ)*sin(60^circ - 36^circ)`
= `(2 sin60^circ* cos36^circ)/(sin^2 60^circ - sin^2 36^circ)` ...[∵ sin(A + B) · sin(A – B) = sin2A – sin2B]
= `(2 xx sqrt(3)/2 xx (sqrt(5) + 1)/4)/((sqrt(3)/2)^2 - (sqrt(10 - 2sqrt(5))/4)^2) ...[because cos 36^circ = (sqrt(5) + 1)/4 and sin 36^circ = sqrt(10 - 2sqrt(5))/4]`
= `(sqrt(3)/4(sqrt(5) + 1))/(3/4 - ((10 - 2sqrt(5))/16)`
= `(sqrt(3)(sqrt(5) + 1))/4 xx 16/(12 - 10 + 2sqrt(5))`
= `(sqrt(3)(sqrt(5) + 1))/4 xx 16/(2(sqrt(5) + 1)`
∴ cosec 96° + cosec 384 ° = `2sqrt(3)` ...(5)
∴ L.H.S. = cosec 48° + cosec 96° + cosec 192° + cosec 384 °
= (cosec 48°+ cosec 192°) + (cosec 96° + cosec 384°)
= `-2sqrt(3) + 2sqrt(3)` .....[By (4) and (5)]
= 0
= R.H.S.
Alternative Method :
Consider,
cosec x + cot x = `1/sinx + cosx/sinx`
= `(1 + cosx)/sinx`
= `(2cos^2 x/2)/(2sin x/2 * cos x/2)`
∴ cosec x + cot x = `cot x/2`
∴ cosec x = `cot x/2 - cot x` ...(1)
Replacing x by 2x, 4x, 8x in (4), we get,
cosec 2x = cot x – cot 2x ...(2)
cosec 4x = cot 2x – cot 4x ...(3)
cosec 8x = cot 4x – cot 8x ...(4)
Adding (1), (2), (3) and (4), we get
cosec x + cosec 2x + cosec 4x + cosec 8x = `cot x/2 - cot8x` ...(5)
By substituting x = 48° in (5), we get,
cosec 48° + cosec 96° + cosec 192° + cosec 384°
= cot 24° – cot 384°
= cot 24° – cot (360° + 24°)
= cot 24° – cot 24° ...[∵ cot (2π + θ) = cot θ]
∴ cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
APPEARS IN
संबंधित प्रश्न
Find the values of:
tan 105°
Find the value of :
cos 315°
Find the value of :
cos (600°)
Find the value of :
tan (– 690°)
Find the value of :
sec 240°
Find the value of :
cosec 780°
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Prove the following:
tan6° tan42° tan66° tan78° = 1
If a = sin 175°+ cos 175°, then ______.
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
The value of sin(– 1125°) is ______.
The value of `sin((25π)/3)` is ______.
If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
The value of cos 480° sin 150° + sin 600° cos 390° is ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of cos(– 870°) is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.