Advertisements
Advertisements
प्रश्न
Prove the following:
tan6° tan42° tan66° tan78° = 1
उत्तर
L.H.S. = tan6° tan42° tan66° tan78°
= `sin6^circ/cos6^circ * sin42^circ/cos42^circ *sin66^circ/cos66^circ *sin78^circ/cos78^circ`
= `((2sin66^circ sin6^circ)(2sin78^circ sin42^circ))/((2cos66^circ cos6^circ)(2cos78^circ cos42^circ)`
= `(cos(66^circ - 6^circ) - cos(66^circ + 6^circ))/(cos(66^circ + 6^circ) + cos(66^circ - 6^circ)) * (cos(78^circ - 42^circ) - cos(78^circ + 42^circ))/(cos(78^circ + 42^circ) + cos(78^circ - 42^circ))`
= `((cos60^circ - cos72^circ)(cos36^circ - cos120^circ))/((cos60^circ + cos72^circ)(cos36^circ + cos120^circ)`
= `((cos60^circ - sin18^circ)(cos36^circ + sin30^circ))/((cos60^circ + sin18^circ)(cos36^circ - sin30^circ)` ...[∵ cos(90° + θ) = – sin θ]
= `((1/2 - (sqrt(5) - 1)/4)((sqrt(5) + 1)/4 + 1/2))/((1/2 + (sqrt(5) - 1)/4)((sqrt(5) + 1)/4 - 1/2))`
= `(9 - 5)/(5 - 1)`
= 1
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the values of:
cos 75°
Find the values of:
cot 225°
Find the value of :
sin (495°)
Find the value of :
tan 225°
Find the value of :
tan (– 690°)
Find the value of :
cot (– 1110°)
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Select the correct option from the given alternatives :
Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______
Prove the following:
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
The value of sin 495° is ______.
The value of `sin((25π)/3)` is ______.
The value of `cos((41π)/4)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
Find the value of `cos ((29 π)/3)`.
If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.
The value of cos 480° sin 150° + sin 600° cos 390° is ______.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of cos(– 870°) is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of sin 150° cos 120° + cos 330° sin 660° is ______.
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.