Advertisements
Advertisements
प्रश्न
Find the value of :
tan 225°
उत्तर
tan 225°= tan (180° + 45°)
= tan 45°
= 1
APPEARS IN
संबंधित प्रश्न
Find the value of:
sin 15°
Find the values of:
tan 105°
Find the value of :
sin 690°
Find the value of :
sin (495°)
Find the value of :
cos 315°
Find the value of :
cos (600°)
Find the value of :
tan (– 690°)
Find the value of :
sec 240°
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.
The value of `sin((25π)/3)` is ______.
The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3 "cosec"(π/6)` is ______.
Find the value of `cos ((29 π)/3)`.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.