Advertisements
Advertisements
प्रश्न
Prove the following:
`tan pi/8 = sqrt(2) - 1`
उत्तर
We know that,
tan 2θ = `(2tantheta)/(1 - tan^2theta)`
By putting θ = `pi/8`, we get
`tan pi/4 = (2tan pi/8)/(1 - tan^2 pi/8)`
Let `tan pi/8` = x.
Then 1 = `(2x)/(1 - x^2)`
∴ 1 – x2 = 2x
∴ x2 + 2x – 1 = 0
∴ x = `(-2 ± sqrt(4 - 4(1)(-1)))/(2 xx 1)`
= `(-2 ± sqrt(8))/2`
= `(-2 ± 2sqrt(2))/2`
= `-1 ± sqrt(2)`
Since `pi/8` lies in the first quadrant, x = `tan pi/8` is positive.
∴ `tan pi/8 = sqrt(2) - 1`.
APPEARS IN
संबंधित प्रश्न
Find the value of :
sin 690°
Find the value of :
tan (– 690°)
Find the value of :
sec (– 855°)
Find the value of :
cot (– 1110°)
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Select the correct option from the given alternatives :
If sin θ = n sin (θ + 2α), then tan (θ + α) is equal to
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
tan6° tan42° tan66° tan78° = 1
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
The value of sin 495° is ______.
The value of `sin((25π)/3)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
Find the value of `cos ((29 π)/3)`.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
In a ΔABC, if ∠A = `π/2`, then cos2 B + cos2 C is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of sin 930° is ______.
The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.