Advertisements
Advertisements
Question
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Solution
We know that,
tan 2θ = `(2tantheta)/(1 - tan^2theta)`
By putting θ = `pi/8`, we get
`tan pi/4 = (2tan pi/8)/(1 - tan^2 pi/8)`
Let `tan pi/8` = x.
Then 1 = `(2x)/(1 - x^2)`
∴ 1 – x2 = 2x
∴ x2 + 2x – 1 = 0
∴ x = `(-2 ± sqrt(4 - 4(1)(-1)))/(2 xx 1)`
= `(-2 ± sqrt(8))/2`
= `(-2 ± 2sqrt(2))/2`
= `-1 ± sqrt(2)`
Since `pi/8` lies in the first quadrant, x = `tan pi/8` is positive.
∴ `tan pi/8 = sqrt(2) - 1`.
APPEARS IN
RELATED QUESTIONS
Find the value of:
sin 15°
Find the values of:
tan 105°
Find the value of :
sin 690°
Find the value of :
sin (495°)
Find the value of :
cos 315°
Find the value of :
cos (600°)
Find the value of :
tan 225°
Find the value of :
cosec 780°
Find the value of :
cot (– 1110°)
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
Prove the following:
sin47° + sin61° − sin11° − sin25° = cos7°
If a = sin 175°+ cos 175°, then ______.
The value of sin(– 1125°) is ______.
The value of `cos((41π)/4)` is ______.
If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.
The value of cos 480° sin 150° + sin 600° cos 390° is ______.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
sin2 17.5° + sin2 72.5° is equal to ______.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.