Advertisements
Advertisements
प्रश्न
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
उत्तर
L.H.S. = `(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))`
= `((-cosx)(cosx))/((sinx)(-sinx)`
= `cos^2x/sin^2x`
= cot2x
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the values of:
tan 105°
Find the value of :
sin (495°)
Find the value of :
cos (600°)
Find the value of :
tan 225°
Find the value of :
cosec 780°
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Prove the following:
cosθ + sin (270° + θ) − sin (270° − θ) + cos (180° + θ) = 0
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Prove the following:
tan6° tan42° tan66° tan78° = 1
Prove the following:
sin47° + sin61° − sin11° − sin25° = cos7°
If a = sin 175°+ cos 175°, then ______.
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.
The value of sin 495° is ______.
The value of sin(– 1125°) is ______.
The value of `sin((25π)/3)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
Find the value of `cos ((29 π)/3)`.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
In a ΔABC, if ∠A = `π/2`, then cos2 B + cos2 C is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of cos(– 870°) is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of sin 150° cos 120° + cos 330° sin 660° is ______.
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.