Advertisements
Advertisements
प्रश्न
Prove the following:
cosθ + sin (270° + θ) − sin (270° − θ) + cos (180° + θ) = 0
उत्तर
L.H.S. = cos θ + sin (270° + θ) − sin (270° − θ) +cos (180° + θ)
= cos θ + (− cos θ) − (− cos θ) − cos θ
= cos θ − cos θ + cos θ − cos θ
= 0
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the value of:
sin 15°
Find the values of:
cos 75°
Find the values of:
tan 105°
Find the values of:
cot 225°
Find the value of :
sin 690°
Find the value of :
cos (600°)
Find the value of :
cot (– 1110°)
Prove the following:
`cos((3pi)/2 + x) cos(2pi + x)[cot((3pi)/2 - x) + cot(2pi + x)]` = 1
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
Prove the following:
tan 20° tan 80° cot 50° = `sqrt(3)`
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Prove the following:
tan6° tan42° tan66° tan78° = 1
If a = sin 175°+ cos 175°, then ______.
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.
The value of sin(– 1125°) is ______.
The value of `sin((25π)/3)` is ______.
The value of `cos((41π)/4)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
If cos θ = `- sqrt(3)/2` and sin α = `-3/5`, where θ does not and α lies in the third quadrant, then `(2 tan α + sqrt(3) tan θ)/(cot^2 θ + cos alpha)` is equal to ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
If ΔABC is a right angled at C, then tan A + tan B is equal to ______.
If `sin A - sqrt(6) cos A = sqrt(7) cos A`, then `cos A + sqrt(6) sin A` is equal to ______.
In a ΔPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then ∠R is equal to ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.