Advertisements
Advertisements
प्रश्न
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
उत्तर
Let θ = 18°
∴ 5θ = 90°
∴ 2θ + 3θ = 90°
∴ 2θ = 90° – 3θ
∴ sin 2θ = sin (90° – 3θ)
∴ sin 2θ = cos 3θ
∴ 2 sin θ cos θ = 4 cos3θ – 3 cos θ
∴ 2 sin θ = 4 cos2θ – 3 ...[∵ cos θ ≠ 0]
∴ 2 sin θ = 4 (1 – sin2θ) – 3
∴ 2 sin θ = 1 – 4 sin2θ
∴ 4 sin2θ + 2 sin θ – 1 = 0
∴ sin θ = `(-2 ± sqrt(4 + 16))/8`
= `(-2 ± 2sqrt(5))/8`
= `(-1 ± sqrt(5))/4`
Since, sin 18° > 0
∴ sin 18° = `(sqrt(5) - 1)/4`
APPEARS IN
संबंधित प्रश्न
Find the values of:
tan 105°
Find the values of:
cot 225°
Find the value of :
sin 690°
Find the value of :
cos 315°
Find the value of :
sec 240°
Find the value of :
cot (– 1110°)
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
Prove the following:
`("cosec"(90^circ - x)sin(180^circ - x)cot(360^circ - x))/(sec(180^circ + x)tan(90^circ + x)sin(-x))` = 1
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Select the correct option from the given alternatives :
Let 0 < A, B < `pi/2` satisfying the equation 3 sin2A + 2 sin2B = 1 and 3 sin 2A − 2 sin 2B = 0 then A + 2B is equal to ______
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
Prove the following:
sin47° + sin61° − sin11° − sin25° = cos7°
If a = sin 175°+ cos 175°, then ______.
The value of sin 495° is ______.
The value of sin(– 1125°) is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3 "cosec"(π/6)` is ______.
Find the value of `cos ((29 π)/3)`.
The value of `(cot 54^circ)/(tan 36^circ) + (tan 20^circ)/(cot 70^circ)` is ______.
cos 1° + cos 2° + cos 3° + ... + cos 180° is equal to ______.
In a ΔABC, if ∠A = `π/2`, then cos2 B + cos2 C is equal to ______.
If `sin A - sqrt(6) cos A = sqrt(7) cos A`, then `cos A + sqrt(6) sin A` is equal to ______.
If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to ______.
The value of cos (270° + θ) cos (90° – θ) – sin (270° – θ) cos θ is ______.
The value of sin 930° is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of `(cos(90^circ + θ) sec(-θ)tan(180^circ - θ))/(sec(360^circ - θ)sin(180^circ + θ)cot(90^circ - θ))` is ______.
The value of tan 315° cot(– 405°) + cot 495° tan (– 585°).
The value of sin 150° cos 120° + cos 330° sin 660° is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.