Advertisements
Advertisements
प्रश्न
Prove the following:
sin 20° sin 40° sin 80° = `sqrt(3)/8`
उत्तर
L.H.S. = sin 20° sin 40° sin 80°
= sin 20°. sin 40°. sin 80°
= `1/2(2.sin40^circ.sin20^circ).sin80^circ`
= `1/2[cos(40^circ - 20^circ) - cos(40^circ + 20^circ)].sin80^circ`
= `1/2(cos20^circ - cos60^circ)sin80^circ`
= `1/2cos20^circ.sin80^circ - 1/2 cos60^circ.sin80^circ`
= `1/(2 xx 2)(2sin80^circ.cos20^circ) - 1/2(1/2).sin80^circ`
= `1/4.[sin(80^circ + 20^circ) + sin(80^circ - 20^circ)] - 1/4.sin80^circ`
= `1/4.(sin100^circ + sin60^circ) - 1/4.sin80^circ`
= `1/4sin 100^circ + 1/4sin 60^circ - 1/4sin 80^circ`
= `1/4.sin(180^circ - 80^circ) + 1/4 xx sqrt(3)/2 - 1/4.sin80^circ`
= `1/4sin80^circ + sqrt(3)/8 - 1/4sin80^circ` ...[∵ sin (180° – θ) = sin θ]
= `sqrt(3)/8`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the value of:
sin 15°
Find the values of:
cos 75°
Find the value of :
sin 690°
Find the value of :
cos (600°)
Find the value of :
tan 225°
Find the value of :
tan (– 690°)
Find the value of :
cot (– 1110°)
Prove the following:
`(cos(pi + x) cos(-x))/(sin(pi - x)cos(pi/2 + x))` = cot2x
Prove the following:
sec 840° . cot (– 945°) + sin 600° tan (– 690°) = `3/2`
Prove the following:
`(sin^3(pi + x)sec^2(pi - x)tan(2pi - x))/(cos^2(pi/2 + x)sin(pi - x)"cosec"^2 - x)` = tan3x
Prove the following:
sin 18° = `(sqrt(5) - 1)/4`
Prove the following:
cos 36° = `(sqrt(5) + 1)/4`
Prove the following:
sin 36° = `(sqrt(10 - 2sqrt(5)))/4`
Prove the following:
`tan pi/8 = sqrt(2) - 1`
If a = sin 175°+ cos 175°, then ______.
If f(x) = `(2"x" + 3)/(3"x" - 2)`, `"x" ≠ 2/3`, then the function fof is ____________.
If θ = `(17π)/3` then, tan θ – cot θ = ______.
`(1 - 2[cos 60^circ - cos 80^circ])/(2 sin 10^circ)` = ______.
The value of sin 495° is ______.
The value of sin(– 1125°) is ______.
The value of `cos((41π)/4)` is ______.
The value of `cos π/8 + cos (3π)/8 + cos (5π)/8 + cos (7π)/8` is ______.
The value of `2 cot^2(π/6) + 4 tan^2(π/6) - 3 "cosec"(π/6)` is ______.
Find the value of `cos ((29 π)/3)`.
If `cosA/3 = cosB/4 = 1/5, - π/2 < A < 0` and `- π/2 < B < 0`, then the value of 2 sin A + 4 sin B is ______.
The value of `cos^2 π/16 + cos^2 (3π)/16 + cos^2 (5π)/16 + cos^2 (7π)/16` is ______.
If tan θ = `1/sqrt(7)`, then `(("cosec"^2θ - sec^2θ))/(("cosec"^2θ + sec^2θ))` is equal to ______.
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ is ______.
The value of sin 135° cosec 225° tan 150° cot 315° is ______.
The value of `2 sin^2 π/6 + "cosec"^2 (7π)/6 cos^2 π/3` is ______.
cos2 5° + cos2 10° + cos2 15° + .... + cos2 85° + cos2 90° is equal to ______.
cos 1°. cos 2°. cos 3° ...... cos 179° = ______.
sin (270° – θ) sin (90° – θ) – cos ( 270° – θ) cos (90° + θ) is ______.