मराठी

Show that the Quadrilateral Whose Vertices Are (2, −1), (3, 4) (−2, 3) and (−3,−2) is a Rhombus. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the quadrilateral whose vertices are (2, −1), (3, 4) (−2, 3) and (−3,−2) is a rhombus.

उत्तर

The distance d between two points (x1,y1) and (x2,y2) is given by the formula

d=(x1-x2)2+(y1-y2)2

In a rhombus all the sides are equal in length.

Here the four points are (21), B (3,  4), (23) and (32).

First let us check if all the four sides are equal.

AB=(2-3)2+(-1-4)2

=(-1)2+(-5)2

=1+25

AB=26

BC=(3+2)2+(4-3)2

=(5)2+(1)2

=25+1

BC=26

CD = sqrt((3 + 2)^2 + (4 - 3)^2)

=(-5)2+(-1)2

=25+1

CD=26

AD=(2+3)2+(-1+2)2

=(5)2+(1)2

=25+1

AD=26

Here, we see that all the sides are equal, so it has to be a rhombus.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.2 | Q 14 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.