मराठी

Prove that the Points (2,3), (−4, −6) and (1, 3/2) Do Not Form a Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the points (2,3), (-4, -6) and (1, 3/2) do not form a triangle.

उत्तर

The distance d between two points `(x_1,y_1)` and `(x_2,y_2)` is given by the formula

`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`

In any triangle the sum of lengths of any two sides need to be greater than the third side.

Here the three points are A(2, 3), B(-4, -6) and C(1, 3/2) 

Let us now find out the lengths of all the three sides of the given triangle.

`AB = sqrt((2 + 4)^2 + (3 + 6)^2)`

`= sqrt((6)^2 + (9)^2)`

`= sqrt(36 + 81)`

`AB = sqrt(117)`

`BC = sqrt((-4 -1)^2 + (-6 - 3/2)^2)`

`= sqrt((-5)^2 + ((-15)/2)^2)`

`= sqrt(25 + 225/4)`

`BC = sqrt(81.24)`

`AC = sqrt((2 - 1)^2 + (3 - 3/2)^2)`

` = sqrt((1)^2 + (3/2)^2)`

`= sqrt(1 + 9/4)`

`AC = sqrt(3.25)`

Here we see that, BC + AC not greater than AB

This is in violation of the basic property of any triangle to exist. Therefore these points cannot give rise to a triangle.

Hence we have proved that the given three points do not form a triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.2 | Q 12 | पृष्ठ १५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×