मराठी

Show that the diagonals of a square are equal and bisect each other at right angles. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the diagonals of a square are equal and bisect each other at right angles.

बेरीज

उत्तर

Let ABCD be a square such that its diagonals AC and BD intersect at O.

 

(i) To prove that the diagonals are equal, we need to prove AC = BD.

In ΔABC and ΔBAD, we have

AB = BA           ...[Common]

BC = AD          ...[Sides of a square ABCD]

∠ABC = ∠BAD    ...[Each angle is 90°]

∴ ΔABC ≅ ΔBAD    ...[By SAS congruency]

⇒ AC = BD        ...[By CPCT]          ...(1)

(ii) AD || BC and AC is a transversal.       ...[∵ A square is a parallelogram]

∴ ∠1 = ∠3    ...[Alternate interior angles are equal]

Similarly, ∠2 = ∠4

Now, in ΔOAD and ΔOCB, we have

AD = CB        ...[Sides of a square ABCD]

∠1 = ∠3        ...[Proved]

∠2 = ∠4       ...[Proved]

∴ ΔOAD ≅ ΔOCB      ...[By ASA congruency]

⇒ OA = OC and OD = OB     ...[By CPCT]       ...(2)

i.e., the diagonals AC and BD bisect each other at O.

(iii) In ΔOBA and ΔODA, we have

OB = OD         ...[Proved]

BA = DA          ...[Sides of a square ABCD]

OA = OA         ...[Common]

∴ ΔOBA ≅ ΔODA        ...[By SSS congruency]

⇒ ∠AOB = ∠AOD        ...[By CPCT]        ...(3)

∵ ∠AOB and ∠AOD form a linear pair

∴ ∠AOB + ∠AOD = 180°

∴ ∠AOB = ∠AOD = 90°        ...[By (3)]

AC ⊥ BD         ...(4)

From (1), (2) and (4), we get AC and BD are equal and bisect each other at right angles.

shaalaa.com
Types of Quadrilaterals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Quadrilaterals - Exercise 8.1 [पृष्ठ १४६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 8 Quadrilaterals
Exercise 8.1 | Q 4 | पृष्ठ १४६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×