Advertisements
Advertisements
प्रश्न
Show that the percentage error in the nth root of a number is approximately `1/"n"` times the percentage error in the number
उत्तर
Let x be the number
Let y = `x^(1/"n")`
log y = `1/"n" log x`
Taking differentiate on both sides, we have
`1/y "d"y = 1/"n" xx 1/x "d"x`
`(Deltay)/y = 1/y "d"y`
= `1/"n" xx 1/x "d"x`
`(Deltay)/y xx 100 = 1/"n"(("d"x)/x xx 100)`
`1/"n"` times the percentage error in the number.
APPEARS IN
संबंधित प्रश्न
Let f(x) = `root(3)(x)`. Find the linear approximation at x = 27. Use the linear approximation to approximate `root(3)(27.2)`
Use the linear approximation to find approximate values of `root(4)(15)`
Use the linear approximation to find approximate values of `root(3)(26)`
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
Find a linear approximation for the following functions at the indicated points.
g(x) = `sqrt(x^2 + 9)`, x0 = – 4
Find a linear approximation for the following functions at the indicated points.
h(x) = `x/(x + 1), x_0` = 1
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Absolute error
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the surface area
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find the differential dy for the following functions:
y = `"e"^(x^2 - 5x + 7) cos(x^2 - 1)`
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x3 – 2x2, x = 2, Δx = dx = 0.5
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. What is the percentage increase in the area of the cross-section of the tree?
Assume that the cross-section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
In a newly developed city, it is estimated that the voting population (in thousands) will increase according to V(t) = 30 + 12t2 – t3, 0 ≤ t ≤ 8 where t is the time in years. Find the approximate change in voters for the time change from 4 to `4 1/6` years
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 4 to 4.1 hours?
Choose the correct alternative:
A circular template has a radius of 10 cm. The measurement of the radius has an approximate error of 0.02 cm. Then the percentage error in the calculating the area of this template is
Choose the correct alternative:
The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?