मराठी

सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं।

बेरीज

उत्तर

मान लिया कि O केन्द्र वाला एक वृत्त है।

मान लिया कि AB इस वृत्त का व्यास है।

मान लिया RS और PQ वृत्त के व्यास AB के दोनों सिरों पर खींची गयी स्पर्श रेखाएँ हैं।

अत: प्रमाणित करना है कि RS और PQ समांतर हैं।

चूँकि RS बिन्दु A पर वृत्त की एक स्पर्श रेखा है तथा OA उसी वृत्त की त्रिज्या है।

∴ OA ⊥ RS

∴ ∠ OAR = 90°

और, ∠ OAS = 90°

उसी तरह, OB उसी वृत्त की दूसरी त्रिज्या है तथा PQ वृत के बिन्दु B पर स्पर्श रेखा है।

अत:, OB ⊥ PQ

और ∠ OBP = OBQ = 90°

अब, ∠ OAR = ∠ OBQ = 90°  [एकांतर अंत: कोणों के युग्म हैं।]

और ∠ OAS = ∠ OBP = 90° [एकांतर अंत: कोण हैं।]

चूँकि एकांतर अंत: कोण RS और PQ बराबर है।

अत: RS समांतर है PQ के

अत: किसी वृत के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं।

shaalaa.com
एक बिंदु से एक वृत्त पर स्पर्श रेखाओं की संख्या
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: वृत्त - प्रश्नावली 10.2 [पृष्ठ २३६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 10 वृत्त
प्रश्नावली 10.2 | Q 4. | पृष्ठ २३६

संबंधित प्रश्‍न

सिद्ध कीजिए कि स्पर्श बिन्दु से स्पर्श रेखा पर खींचा गया लम्ब वृत्त के केन्द्र से होकर जाता है।


एक बिन्दु A से, जो एक वृत्त के केन्द्र से 5 cm की दूरी पर है, वृत्त पर स्पर्श रेखा की लम्बाई 4 cm है। वृत्त की त्रिज्या ज्ञात कीजिए।


एक वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है  सिद्ध कीजिए AB + CD = AD + BC


सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।


4 cm त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखंड BD और DC (जिनमें स्पर्श बिन्दु D द्वारा BC विभाजित है) की लम्बाईयाँ क्रमश: 8 cm और 6 cm हैं (देखिए आकृति)। भुजाएँ AB और AC ज्ञात कीजिए।


वृत्त की दो स्पर्श रेखाओं के बीच का कोण 0° हो सकता है।


केंद्र O वाले एक वृत्त पर एक बाहरी बिंदु से दो स्पर्श रेखाएँ PQ और PR खींची गई हैंसिद्ध कीजिए कि QORP एक चक्रीय चतुर्भुज है।


यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है। 


आकृति में, दोनों वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर बिंदु E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि AB = CD है।


एक बाहरी बिंदु P से केंद्र O वाले वृत्त की दो स्पर्श रेखाएँ PA और PB खींची जाती हैं। वृत्त के एक बिंदु E पर एक स्पर्श रेखा खींची जाती है, जो PA और PB को क्रमश : D और E पर प्रतिच्छेद करती है। यदि PA = 10 cm है, तो त्रिभुज PCD का परिमाप ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×