English

सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं। - Mathematics (गणित)

Advertisements
Advertisements

Question

सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं।

Sum

Solution

मान लिया कि O केन्द्र वाला एक वृत्त है।

मान लिया कि AB इस वृत्त का व्यास है।

मान लिया RS और PQ वृत्त के व्यास AB के दोनों सिरों पर खींची गयी स्पर्श रेखाएँ हैं।

अत: प्रमाणित करना है कि RS और PQ समांतर हैं।

चूँकि RS बिन्दु A पर वृत्त की एक स्पर्श रेखा है तथा OA उसी वृत्त की त्रिज्या है।

∴ OA ⊥ RS

∴ ∠ OAR = 90°

और, ∠ OAS = 90°

उसी तरह, OB उसी वृत्त की दूसरी त्रिज्या है तथा PQ वृत के बिन्दु B पर स्पर्श रेखा है।

अत:, OB ⊥ PQ

और ∠ OBP = OBQ = 90°

अब, ∠ OAR = ∠ OBQ = 90°  [एकांतर अंत: कोणों के युग्म हैं।]

और ∠ OAS = ∠ OBP = 90° [एकांतर अंत: कोण हैं।]

चूँकि एकांतर अंत: कोण RS और PQ बराबर है।

अत: RS समांतर है PQ के

अत: किसी वृत के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं।

shaalaa.com
एक बिंदु से एक वृत्त पर स्पर्श रेखाओं की संख्या
  Is there an error in this question or solution?
Chapter 10: वृत्त - प्रश्नावली 10.2 [Page 236]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 10 वृत्त
प्रश्नावली 10.2 | Q 4. | Page 236

RELATED QUESTIONS

यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 800 के कोण पर झुकी हों, तो ∠POA बराबर है:


सिद्ध कीजिए कि स्पर्श बिन्दु से स्पर्श रेखा पर खींचा गया लम्ब वृत्त के केन्द्र से होकर जाता है।


एक वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है  सिद्ध कीजिए AB + CD = AD + BC


सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।


4 cm त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखंड BD और DC (जिनमें स्पर्श बिन्दु D द्वारा BC विभाजित है) की लम्बाईयाँ क्रमश: 8 cm और 6 cm हैं (देखिए आकृति)। भुजाएँ AB और AC ज्ञात कीजिए।


केंद्र O वाले वृत्त पर किसी बाहरी बिंदु P से खींची गई स्पर्श रेखा की लंबाई OP से सदैव छोटी होती है।


वृत्त की दो स्पर्श रेखाओं के बीच का कोण 0° हो सकता है।


यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 90° है, तो OP = `asqrt(2)` होता है।


यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है। 


एक बाहरी बिंदु P से केंद्र O वाले वृत्त की दो स्पर्श रेखाएँ PA और PB खींची जाती हैं। वृत्त के एक बिंदु E पर एक स्पर्श रेखा खींची जाती है, जो PA और PB को क्रमश : D और E पर प्रतिच्छेद करती है। यदि PA = 10 cm है, तो त्रिभुज PCD का परिमाप ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×