English

यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 800 के कोण पर झुकी हों, तो ∠POA बराबर है: - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 800 के कोण पर झुकी हों, तो ∠POA बराबर है:

Options

  • 50°

  • 60°

  •  70°

  • 80°

MCQ
Sum

Solution

50°

स्पष्टीकरण:

यह दिया गया है कि, PA और PB वृत्त की स्पर्श रेखाएँ हैं।

इसलिए, इन स्पर्श रेखाओं पर खींची गई त्रिज्या स्पर्श रेखाओं के लंबवत होगी।

इस प्रकार, OA ⊥ PA और OB ⊥ PB

∠OBP = 90º

∠OAP = 90º

AOBP में,

सभी अंत: कोणों का योग = 360°

∠OAP + ∠APB +∠PBO + ∠BOA = 360°

⇒ 90° + 80° +90º +∠BOA = 360°

⇒ 260° + ∠BOA = 360°

⇒ ∠BOA = 360° – 260°

⇒ ∠BOA = 100°

ΔOPB और ΔOPA में,

AP = BP (एक बिंदु से स्पर्शरेखा)

OA = OB (वृत्त की त्रिज्याएँ)

OP = OP (उभयनिष्ठ भुजा)

इसलिए, ΔOPB ≅ ΔOPA

A ↔ B, P ↔ P, O ↔ O

और इस तरह, ∠POB = ∠POA

`angle"POA" = 1/2 angle"AOB" = (100^@)/2 = 50^@`

अत: विकल्प 50° सही उत्तर है।

shaalaa.com
एक बिंदु से एक वृत्त पर स्पर्श रेखाओं की संख्या
  Is there an error in this question or solution?
Chapter 10: वृत्त - प्रश्नावली 10.2 [Page 236]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 10 वृत्त
प्रश्नावली 10.2 | Q 3. | Page 236

RELATED QUESTIONS

एक बिन्दु A से, जो एक वृत्त के केन्द्र से 5 cm की दूरी पर है, वृत्त पर स्पर्श रेखा की लम्बाई 4 cm है। वृत्त की त्रिज्या ज्ञात कीजिए।


एक वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है  सिद्ध कीजिए AB + CD = AD + BC


सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।


4 cm त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखंड BD और DC (जिनमें स्पर्श बिन्दु D द्वारा BC विभाजित है) की लम्बाईयाँ क्रमश: 8 cm और 6 cm हैं (देखिए आकृति)। भुजाएँ AB और AC ज्ञात कीजिए।


सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने साम्ने की भुजाएँ केन्द्र पर संपूरक कोण अंतरित करती हैं।


यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 90° है, तो OP = `asqrt(2)` होता है।


केंद्र O वाले एक वृत्त पर एक बाहरी बिंदु से दो स्पर्श रेखाएँ PQ और PR खींची गई हैंसिद्ध कीजिए कि QORP एक चक्रीय चतुर्भुज है।


यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है। 


सिद्ध कीजिए कि दो प्रतिच्छेदी रेखाओं को स्पर्श करने वाले वृत्त का केंद्र इन रेखाओं से बने कोण के समद्विभाजक पर स्थित होता है।


केंद्र O और त्रिज्या 5 cm वाले एक वृत्त के केंद्र से 13 cm की दूरी पर एक बिंदु A है। AP और AQ क्रमश: बिंदुओं P और Q पर वृत्त की स्पर्श रेखाएँ हैं। यदि लघु चाप PQ पर स्थित एक बिंदु R पर एक स्पर्श रेखा BC ऐसी खींची जाए, जो AP को B और AQ को C पर प्रतिच्छेद करे, तो ΔABC का परिमाप ज्ञात कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×