English

यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है। 

Sum

Solution


सिद्ध करना है: BO = 2BC

दिया गया है, ∠DBC = 120°

OC, OD और BO को मिलाएँ।

चूँकि BC और BD स्पर्श रेखाएँ हैं।

∴ OC ⊥ BC और OD ⊥ BD

हम जानते हैं कि OB, ∠DBC का कोण समद्विभाजक है।

∴ ∠OBC = ∠DBO = 60°

समकोण ∆OBC में, 

cos 60° = `("BC")/("OB")`

⇒ `1/2 = ("BC")/("OB")`

⇒ OB = 2 BC

भी, BC = BD   ...[बाहरी बिंदु से वृत्त पर खींची गई स्पर्श रेखाएँ बराबर होती हैं।]

OB = BC + BC

⇒ OB = BC + BD

shaalaa.com
एक बिंदु से एक वृत्त पर स्पर्श रेखाओं की संख्या
  Is there an error in this question or solution?
Chapter 9: वृत्त - प्रश्नावली 9.3 [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 9 वृत्त
प्रश्नावली 9.3 | Q 3. | Page 109

RELATED QUESTIONS

एक बिन्दु Q से एक वृत्त की स्पर्श रेखा की लम्बाई 24 cm तथा Q की केन्द्र से दूरी 25 cm है। वृत्त की त्रिज्या है।


यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 800 के कोण पर झुकी हों, तो ∠POA बराबर है:


सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।


सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।


4 cm त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखंड BD और DC (जिनमें स्पर्श बिन्दु D द्वारा BC विभाजित है) की लम्बाईयाँ क्रमश: 8 cm और 6 cm हैं (देखिए आकृति)। भुजाएँ AB और AC ज्ञात कीजिए।


सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने साम्ने की भुजाएँ केन्द्र पर संपूरक कोण अंतरित करती हैं।


वृत्त की दो स्पर्श रेखाओं के बीच का कोण 0° हो सकता है।


यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 90° है, तो OP = `asqrt(2)` होता है।


एक बाहरी बिंदु P से केंद्र O वाले वृत्त की दो स्पर्श रेखाएँ PA और PB खींची जाती हैं। वृत्त के एक बिंदु E पर एक स्पर्श रेखा खींची जाती है, जो PA और PB को क्रमश : D और E पर प्रतिच्छेद करती है। यदि PA = 10 cm है, तो त्रिभुज PCD का परिमाप ज्ञात कीजिए।


केंद्र O और त्रिज्या 5 cm वाले एक वृत्त के केंद्र से 13 cm की दूरी पर एक बिंदु A है। AP और AQ क्रमश: बिंदुओं P और Q पर वृत्त की स्पर्श रेखाएँ हैं। यदि लघु चाप PQ पर स्थित एक बिंदु R पर एक स्पर्श रेखा BC ऐसी खींची जाए, जो AP को B और AQ को C पर प्रतिच्छेद करे, तो ΔABC का परिमाप ज्ञात कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×