Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि R में दिया गया फलन f(x) = x3 - 3x2 + 3x - 100 वर्धमान है।
उत्तर
ज्ञात है, f (x) = x3 - 3x2 + 3x - 100
`therefore` f'(x) = 3x2 - 6x + 3
= 3 (x2 - 2x + 1)
= 3 (x - 1)2 ≥ 0 for all `x in R`
= 3(x - 1)2 > 0
∀ x ∈ R, f'(x) = धनात्मक
अतः फलन f वर्धमान है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि R पर f(x) = 3x + 17 से प्रदत्त फलन वर्धमान है।
सिद्ध कीजिए कि R पर f(x) = e2x से प्रदत्त फलन वर्धमान है।
सिद्ध कीजिए कि f(x) = sin x द्वारा दिया गया फलन
- `(0, pi/2)` में निरंतर वर्धमान है।
- `(pi/2, pi)` में निरंतर ह्रासमान है।
- `(0, pi)` में न तो वर्धमान है और न ह्रासमान।
अंतराल ज्ञात कीजिए जिनमें f(x) = 2x2 - 3x से प्रदत्त फलन f
- वर्धमान
- ह्रासमान
अंतराल ज्ञात कीजिए जिनमें f(x) = 2x3 - 3x2 - 36x + 7 से प्रदत्त फलन f
- वर्धमान
- ह्रासमान
सिद्ध कीजिए कि y = log (1 + x) - `(2"x")/(2 + "x"),` x > -1 अपने संपूर्ण प्रांत में में एक वर्धमान फलन है।
x के उन मानों को ज्ञात कीजिए जिनके लिए y = [x(x – 2)]2 एक वर्धमान फलन है।
सिद्ध कीजिए कि `[0, pi/2]` में `y = (4 sin theta)/(2 + cos theta) - theta, theta` का एक वर्धमान फलन है।
सिद्ध कीजिए कि (-1,1) में f(x) = x2 - x + 1 से प्रदत्त फलन न तो वर्धमान है और न ही ह्रासमान है।
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = - 2x3 - 9x2 - 12x + 1
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या ह्रासमान है:
f(x) = 6 - 9x - x2
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = (x + 1)3 (x - 3)3
निम्नलिखित में कौन से फलन `(0, pi/2)` में ह्रासमान है?
- cos x
- cos 2x
- cos 3x
- tan x
a का वह न्यूनतम मान ज्ञात कीजिए जिसके लिए अंतराल [1, 2] में f(x) = x2 + ax + 1 से प्रदत्त फलन वर्धमान है।
निम्नलिखित में से किस अंतराल में y = x2 e-x वर्धमान है?
अंतराल ज्ञात कीजिए जिन पर: f(x) = `(4 sin x - 2x - x cos x)/(2 + cos x)` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।
अंतराल ज्ञात कीजिए जिन पर f(x) = `x^3 + 1/x^3, x ne 0` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।
दीर्घवृत्त `x^2/a^2 + y^2/b^2 = 1` के अंतर्गत उस समद्विबाहु त्रिभुज का महत्तम क्षेत्रफल ज्ञात कीजिए जिसका शीर्ष दीर्घ अक्ष का एक सिरा है।
मान लीजिए [a, b] पर परिभाषित एक फलन f है। इस प्रकार कि सभी x ∈ (a, b) के लिए f' (x) > 0 है तो सिद्ध कीजिए कि (a, b) पर f एक वर्धमान फलन है।
एक 10 m त्रिज्या की बेलनाकार टंकी में 314 m3/h की दर से गेहूँ भरा जाता है। भरे गए गेहूँ की गहराई की वृद्धि दर है: