Advertisements
Advertisements
प्रश्न
समद्विबाहु ΔABC में AB = AC है। BD तथा CE दो माध्यिकाएँ हैं तो सिद्ध कीजिए कि BD = CE
उत्तर
बिंदु D रेख AC का मध्यबिंदु है । ...(मध्यबिंदु की परिभाषा से)
∴ AD = DC = `1/2` AC ...(1)
AE = EB = `1/2`AB ....(2)
AB = AC
दोनों पक्षो में `1/2` से गुणा करने पर,
`1/2 "AB" = 1/2 "AC"` ...(3)
∴ AE = AD .....[(1), (2) तथा (3) से] ...(4)
ΔBAD तथा ΔCAE में,
रेख AB ≅ रेख AC ...(दिया है।)
∠BAD ≅ ∠CAE ...(सामान्य रूप)
रेख AE ≅ रेख AD ....(4 से)
∴ ΔBAD ≅ ΔCAE ....(सर्वांगसमता की भू - को - भू कसौटी से)
∴ रेख BD ≅ रेख CE
∴ BD = CE.
APPEARS IN
संबंधित प्रश्न
यदि △DEF ≅ △BCA हो, तो △BCA के उन भागो को लिखिए जो `bar(DF)` के संगत हो:
एक वर्गांकित शीट पर, बराबर क्षेत्रफलों वाले दो त्रिभुजों को इस प्रकार बनाइए कि त्रिभुज सर्वांगसम हों
आप उनके परिमाप के बारे में क्या कह सकते हैं?
∆ABC में, AB = AC और ∠B = 50° है, तब ∠C बराबर है
∆ABC में, BC = AB और ∠B = 80° है, तब ∠A बराबर है
एक त्रिभुज की दो भुजाओं की लंबाइयाँ 5 cm और 1.5 cm हैं। इस त्रिभुज की तीसरी भुजा की लंबाई निम्नलिखित नहीं हो सकती ______
∆PQR में, यदि ∠R > ∠Q है, तो ______
नीचे दिए गए उदाहरण में त्रिभुजों की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं जोड़ी के त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔXYZ ≅ ΔLMN
नीचे दिए गए प्रत्येक उदाहरण में त्रिभुज की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं। त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔLMN ≅ ΔPTR
नीचे दी गई आकृति में दर्शाए अनुसार ΔLMN तथा ΔPNM में LM = PN, LN = PM हो तो त्रिभुजों की सर्वांगसमता की कसौटी लिखिए । शेष सर्वांगसम घटकों के नाम भी लिखिए ।
ΔTPQ में ∠T = 65°, ∠P = 95° तो निम्नलिखित में से कौन-सा कथन सत्य है ?