Advertisements
Advertisements
प्रश्न
Solve the following:
A bank pays interest by continuous compounding, that is by treating the interest rate as the instantaneous rate of change of principal. A man invests ₹ 1,00,000 in the bank deposit which accrues interest, 8% per year compounded continuously. How much will he get after 10 years? (e0.8 = 2.2255)
उत्तर
Let P(t) denotes the amount of money in the account at time t.
Then the differential equation governing the growth of money is
`"dp"/"dt" = 8/100 "p"` = 0.08 p
⇒ `"dp"/"p"` = 0.08 dt
Integrating on both sides
`int "dp"/"p" = int 0.08 "dt"`
loge P = 0.08 t + c
P = `"e"^(0.08"t") + "c"`
P = `"e"^(0.08"t")* "e"^"c"`
P = `"C"_1 "e"^(0.08"t")` .........(1)
when t = 0, P = ₹ 1,00,000
Equation (1)
⇒ 1,00,000 = C1 e°
C1 = 1,00,000
∴ P = `100000 "e"^(0.08"t")`
At t = 10
P = `1,00,000 * "e"^(0.08(10))`
= 1,00,000 e0.8 .......{∵ e0.8 = 2.2255}
= 100000 (2.2255)
p = ₹ 2,25,550
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`(ydx - xdy) cot (x/y)` = ny2 dx
Solve the following:
`("d"y)/("d"x) - y/x = x`
Solve the following:
`("d"y)/(""dx) + y cos x = sin x cos x`
Choose the correct alternative:
If y = ex + c – c3 then its differential equation is
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Solve `x ("d"y)/(d"x) + 2y = x^4`
A manufacturing company has found that the cost C of operating and maintaining the equipment is related to the length ’m’ of intervals between overhauls by the equation `"m"^2 "dC"/"dm" + 2"mC"` = 2 and c = 4 and when = 2. Find the relationship between C and m
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`