मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

Solve the following linear programming problem graphically. Maximise Z = 4x1 + x2 subject to the constraints x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1 ≥ 0, x2 ≥ 0. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following linear programming problem graphically.

Maximise Z = 4x1 + x2 subject to the constraints x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1 ≥ 0, x2 ≥ 0.

आलेख

उत्तर

Maximise Z = 4x1 + x2

Subject to the constraints

x1 + x2 ≤ 50

3x1 + x2 ≤ 90

x1, x2 ≥ 0

Since the decision variables, x1 and x2 are non-negative, the solution lies in the I quadrant of the plane.

Consider the equations

x1 + x2 = 50

x1 0 50
x2 50 0

3x1 + x2 = 90

x1 0 30
x2 90 0

The feasible region is OABC and its co-ordinates are O(0, 0) A(30, 0) C(0, 50) and B is the point of intersection of the lines

x1 + x2 = 50 ..........(1)

and 3x1 + x2 = 90 .........(2)

Verification of B:

x1 + x2 = 50 ..........(1)
3x1 + x2 = 90 .........(2)
−     −       −       
− 2x1 = − 40

x1 = 20

From (1), 20 + x2 = 50

x2 = 30

∴ B is (20, 30)

Corner points Z = 4x1 + x2
O(0, 0) 0
A(30, 0) 120
B(20, 30) 110
C(0, 50) 50

Maximum value occurs at A(30, 0)

Hence the solution is x1 = 30, x2 = 0 and Zmax = 120.

shaalaa.com
Linear Programming Problem (L.P.P.)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Miscellaneous Problems [पृष्ठ २५२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
पाठ 10 Operations Research
Miscellaneous Problems | Q 3 | पृष्ठ २५२

संबंधित प्रश्‍न

Find the feasible solution of the following inequation:

2x + 3y ≤ 6, x + y ≥ 2, x ≥ 0, y ≥ 0


A manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry and then sent to the machine shop for finishing. The number of man-hours of labour required in each shop for production of A and B per unit and the number of man-hours available for the firm is as follows :

Gadgets Foundry Machine shop
A 10 5
B 6 4
Time available (hour) 60 35

Profit on the sale of A is ₹ 30 and B is ₹ 20 per units. Formulate the L.P.P. to have maximum profit.


Solve the following LPP by graphical method:

Maximize z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


The corner points of the feasible solution are (0, 0), (2, 0), `(12/7, 3/7)`, (0, 1). Then z = 7x + y is maximum at ______.


Solve the following LPP:

Maximize z = 2x + 3y subject to x - y ≥ 3, x ≥ 0, y ≥ 0.


Maximize z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0


x − y ≤ 1, x − y ≥ 0, x ≥ 0, y ≥ 0 are the constant for the objective function z = x + y. It is solvable for finding optimum value of z? Justify?


A firm manufactures two products A and B on which the profits earned per unit are ₹ 3 and ₹ 4 respectively. Each product is processed on two machines M1 and M2. Product A requires one minute of processing time on M1 and two minutes on M2, While B requires one minute on M1 and one minute on M2. Machine M1 is available for not more than 7 hrs 30 minutes while M2 is available for 10 hrs during any working day. Formulate this problem as a linear programming problem to maximize the profit.


The optimal value of the objective function is attained at the ______ of feasible region.


For the following shaded region, the linear constraint are:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×