मराठी

The Coordinates of a Point on X-axis Which Lies on the Perpendicular Bisector of the Line Segment Joining the Points (7, 6) and (−3, 4) Are - Mathematics

Advertisements
Advertisements

प्रश्न

The coordinates of a point on x-axis which lies on the perpendicular bisector of the line segment joining the points (7, 6) and (−3, 4) are

पर्याय

  • (0, 2)

  •  (3, 0)

  •  (0, 3)

  •  (2, 0)

MCQ

उत्तर

TO FIND: The coordinates of a point on x axis which lies on perpendicular bisector of line segment joining points (7, 6) and (−3, 4).

Let P(xy) be any point on the perpendicular bisector of AB. Then,

PA=PB

                  `sqrt((x -7)^2 + (y -6)^2) = sqrt((x-(-3))^2+(y-4)^2)`

                    `(x-7)^2+ (y - 6)^2 = (x +3)62 + (y-4)^2`

`x^2 - 14x + 49 +y^2 - 12y +36 = x^2 +6x +9 +y^2 -8y + 16`

-14x - 6x - 12y - 8y + 49 +36 -9 - 16 = 0

                               - 20x + 20y + 60 = 0

                                             x - y - 3 = 0

x - y = 3

 

On x-axis y is 0, so substituting y=0 we get x= 3

Hence the coordinates of point is (3,0) . 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.7 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.7 | Q 33 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The points A(2, 0), B(9, 1) C(11, 6) and D(4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


If three consecutive vertices of a parallelogram are (1, -2), (3, 6) and (5, 10), find its fourth vertex.


If  p(x , y)  is point equidistant from the points A(6, -1)  and B(2,3) A , show that x – y = 3


Find the co-ordinates of the point which divides the join of A(-5, 11) and B(4,-7) in the ratio 7 : 2


If the point A(0,2) is equidistant from the points B(3,p) and C(p, 5), find p.


Find the ratio in which the line segment joining the points A(3, 8) and B(–9, 3) is divided by the Y– axis.


ΔXYZ ∼ ΔPYR; In ΔXYZ, ∠Y = 60o, XY = 4.5 cm, YZ = 5.1 cm and XYPY =` 4/7` Construct ΔXYZ and ΔPYR.


The perpendicular distance of the P (4,3)  from y-axis is


Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.

 

If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.

 
 

Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).

 

If P (x, 6) is the mid-point of the line segment joining A (6, 5) and B (4, y), find y.

 

If the centroid of a triangle is (1, 4) and two of its vertices are (4, −3) and (−9, 7), then the area of the triangle is


 In Fig. 14.46, the area of ΔABC (in square units) is


If A(4, 9), B(2, 3) and C(6, 5) are the vertices of ∆ABC, then the length of median through C is


If y-coordinate of a point is zero, then this point always lies ______.


Abscissa of a point is positive in ______.


(–1, 7) is a point in the II quadrant.


Seg AB is parallel to X-axis and coordinates of the point A are (1, 3), then the coordinates of the point B can be ______.


The coordinates of two points are P(4, 5) and Q(–1, 6). Find the difference between their abscissas.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×