Advertisements
Advertisements
प्रश्न
The following are the marks obtained by 70 boys in a class test:
Marks | No. of boys |
30 – 40 | 10 |
40 – 50 | 12 |
50 – 60 | 14 |
60 – 70 | 12 |
70 – 80 | 9 |
80 – 90 | 7 |
90 – 100 | 6 |
Calculate the mean by:
Step-deviation method
उत्तर
Step-deviation method
Marks |
No. of boys |
Mid-value |
A = 65 |
fiui |
30 – 40 | 10 | 35 | –3 | –30 |
40 – 50 | 12 | 45 | –2 | –24 |
50 – 60 | 14 | 55 | –1 | –14 |
60 – 70 | 12 | A = 65 | 0 | 0 |
70 – 80 | 9 | 75 | 1 | 9 |
80 – 90 | 7 | 85 | 2 | 14 |
90 – 100 | 6 | 95 | 3 | 18 |
Total | 70 | –27 |
Here A = 65 and h = 10
`barx = A + h xx (sumf_iu_i)/(sum f_i)`
= `65 +10 xx ((-27)/70)`
= 65 – 3.86
= 61.14
APPEARS IN
संबंधित प्रश्न
Calculate the mean of the distribution given below using the shortcut method.
Marks | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 |
No. of students | 2 | 6 | 10 | 12 | 9 | 7 | 4 |
The following table gives the age of 50 student of a class. Find the arithmetic mean of their ages.
Age-years | 16 – 18 | 18 – 20 | 20 – 22 | 22 – 24 | 24 – 26 |
No. of students | 2 | 7 | 21 | 17 | 3 |
The following table shows the expenditure of 60 boys on books. Find the mode of their expenditure:
Expenditure (Rs) | No. of students |
20 – 25 | 4 |
25 – 30 | 7 |
30 – 35 | 23 |
35 – 40 | 18 |
40 – 45 | 6 |
45 – 50 | 2 |
The frequency distribution table below shows the height of 50 students of grade 10.
Heights (in cm) | 138 | 139 | 140 | 141 | 142 |
Frequency | 6 | 11 | 16 | 10 | 7 |
Find the median, the upper quartile and the lower quartile of the heights.
The marks of 200 students in a test is given below :
Marks% | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 | 60-69 | 70-79 | 80-89 |
No. of Students | 7 | 11 | 20 | 46 | 57 | 37 | 15 | 7 |
Draw an ogive and find
(i) the median
(ii) the number of students who scored more than 35% marks
Find the mean of first six natural numbers.
The mean of a certain number of observations is 32. Find the resulting mean, if the observation is, decreased by 7
Find the mean of the first six multiples of 5.
Find the mean of: all prime numbers between 20 and 40.
In a given data, arranged in ascending or descending order, the middle most observation is called ______.