मराठी

The line segment joining the points A(3, 2) and B(5, 1) is divided at the point P in the ratio 1 : 2 and it lies on the line 3x – 18y + k = 0. Find the value of k. - Mathematics

Advertisements
Advertisements

प्रश्न

The line segment joining the points A(3, 2) and B(5, 1) is divided at the point P in the ratio 1 : 2 and it lies on the line 3x – 18y + k = 0. Find the value of k.

बेरीज

उत्तर

Given that, the line segment joining the points A(3, 2) and B(5, 1) is divided at the point P in the ratio 1 : 2.

∴ Coordinate of point P = `{(5(1) + 3(2))/(1 + 2), (1(1) + 2(2))/(1 + 2)}`   ...`[∵ "By section formula for internal ratio" = ((m_1x_2 + m_2x_1)/(m_1 + m_2), (m_1y_2 + m_2y_1)/(m_1 + m_2))]`

= `((5 + 6)/3, (1 + 4)/3)` 

= `(11/3, 5/3)`

But the point `P(11/3, 5/3)` lies on the line 3x – 18y + k = 0   ...[Given]

∴ `3(11/3) - 18(5/8) + k` = 0

⇒ 11 – 30 + k = 0

⇒ k – 19 = 0

⇒ k = 19

Hence, the required value of k is 19.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Coordinate Geometry - Exercise 7.3 [पृष्ठ ८४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 7 Coordinate Geometry
Exercise 7.3 | Q 15 | पृष्ठ ८४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×