Advertisements
Advertisements
प्रश्न
To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
Steps of construction:
- Draw a line segment BC.
- With B and C as centres, draw two arcs of suitable radius intersecting each other at A.
- Join BA and CA and we get the required triangle ∆ABC.
- Draw a ray BX from B downwards to make an acute angle ∠CBX.
- Now, mark seven points B1, B2, B3 ... B7 on BX, such that BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7.
- Join B3C and draw a line B7C’ || B3C from B7 such that it intersects the extended line segment BC at C’.
- Draw C’A’ || CA in such a way that it intersects the extended line segment BA at A’.
Then, ∆A’BC’ is the required triangle whose sides are `7/3` of the corresponding sides of ∆ABC.
According to the question,
We have,
Segment B6C’ || B3C.
But it is clear in our construction that it is never possible that segment B6C’ || B3C since the similar triangle A’BC’ has its sides `7/3` of the corresponding sides of triangle ABC.
So, B7C’ is parallel to B3C.
APPEARS IN
संबंधित प्रश्न
Construct a triangle ABC with BC = 7 cm, ∠B = 60° and AB = 6 cm. Construct another triangle whose sides are `3/4` times the corresponding sides of ∆ABC.
Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are `2/3` of the corresponding sides of the first triangle. Give the justification of the construction.
Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.
Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also, justify your construction.
Find the ratio in which point T(–1, 6)divides the line segment joining the points P(–3, 10) and Q(6, –8).
Δ AMT ∼ ΔAHE. In Δ AMT, MA = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `(MA)/(HA) = 7/5`. construct Δ AHE.
To divide a line segment AB in the ratio 4 : 7, a ray AX is drawn first such that ∠BAX is an acute angle and then points A1, A2, A3, .... are located at equal distances on the ray AX and the point B is joined to ______.
Construction of similar polygons is similar to that of construction of similar triangles. If you are asked to construct a parallelogram similar to a given parallelogram with a given scale factor, which of the given steps will help you construct a similar parallelogram?
Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor `5/3`.
Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.