मराठी

Two Circles Are Drawn with Sides Ab, Ac of a Triangle Abc as Diameters. They Intersect at a Point D. Prove that D Lies on Bc - Mathematics

Advertisements
Advertisements

प्रश्न

Two circles are drawn with sides AB, AC of a triangle ABC as diameters. They intersect at a point D. Prove that D lies on BC.

बेरीज

उत्तर १

AB and AC are diameters of circles with oentre O and O1 respectively 

∠ ADB = 90 ° ---( 1) (Angle in a semi circle is a right angle) 

Similarly, ∠ ADB = 90° ---(2) 

Adding ( 1) and (2) 

∠ ADB +  ∠ ADC = 90 + 90 

∠ BDC = 180° 

Hence, BDC is a straight line. 

shaalaa.com

उत्तर २

Join AD.
Since angle in a semi-circle is a right angle.


Therefore, 
∠ADB = 90° and ∠ADC = 90° 
⇒ ∠ADB + ∠ADC = 90° + 90°  
⇒ ∠ADB + ∠ADC = 180°

BDC is a straight line.
⇒ D lies on BC.
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Circles - Exercise 17.2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 1 | Q 11

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×