हिंदी

Two Circles Are Drawn with Sides Ab, Ac of a Triangle Abc as Diameters. They Intersect at a Point D. Prove that D Lies on Bc - Mathematics

Advertisements
Advertisements

प्रश्न

Two circles are drawn with sides AB, AC of a triangle ABC as diameters. They intersect at a point D. Prove that D lies on BC.

योग

उत्तर १

AB and AC are diameters of circles with oentre O and O1 respectively 

∠ ADB = 90 ° ---( 1) (Angle in a semi circle is a right angle) 

Similarly, ∠ ADB = 90° ---(2) 

Adding ( 1) and (2) 

∠ ADB +  ∠ ADC = 90 + 90 

∠ BDC = 180° 

Hence, BDC is a straight line. 

shaalaa.com

उत्तर २

Join AD.
Since angle in a semi-circle is a right angle.


Therefore, 
∠ADB = 90° and ∠ADC = 90° 
⇒ ∠ADB + ∠ADC = 90° + 90°  
⇒ ∠ADB + ∠ADC = 180°

BDC is a straight line.
⇒ D lies on BC.
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Circles - Exercise 17.2

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 17 Circles
Exercise 17.2 | Q 9
आईसीएसई Mathematics [English] Class 10
अध्याय 15 Circles
Exercise 1 | Q 11

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.