हिंदी

In the given figure, QAP is the tangent at point A and PBD is a straight line. If ∠ACB = 36° and ∠APB = 42°, find: ∠BAP ∠ABD ∠QAD ∠BCD - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, QAP is the tangent at point A and PBD is a straight line.


If ∠ACB = 36° and ∠APB = 42°, find:

  1. ∠BAP
  2. ∠ABD
  3. ∠QAD
  4. ∠BCD
योग

उत्तर

PAQ is a tangent and AB is a chord of the circle.

i. ∴ ∠BAP = ∠ACB = 36°  ...(Angles in alternate segment)

ii. In ΔAPB

Ext ∠ABD = ∠APB + ∠BAP

`=>` Ext ∠ABD = 42° + 36° = 78°

iii. ∠ADB = ∠ACB = 36°  ...(Angles in the same segment)

Now in ΔPAD

Ext. ∠QAD = ∠APB + ∠ADB

`=>` Ext ∠QAD = 42° + 36° = 78°

iv. PAQ is the tangent and AD is chord

∴ QAD = ∠ACD = 78°  ...(Angles in alternate segment)

And ∠BCD = ∠ACB + ∠ACD

∴  ∠BCD = 36° + 78° = 114°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Tangents and Intersecting Chords - Exercise 18 (C) [पृष्ठ २८७]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 18 Tangents and Intersecting Chords
Exercise 18 (C) | Q 34 | पृष्ठ २८७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×