मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Two Photons of - Physics

Advertisements
Advertisements

प्रश्न

Two photons of 

पर्याय

  • equal wavelength have equal linear momenta

  • equal energies have equal linear momenta

  • equal frequencies have equal linear momenta

  • equal linear momenta have equal wavelengths

MCQ

उत्तर

equal linear momenta have equal wavelengths

Two photons having equal linear momenta have equal wavelengths is correct. As in the rest of the options magnitude of momentum or energy can be same because energy and momentum are inversely proportional to wavelength. But the direction of propagation of the photons can be different.
Hence the correct option is D.

shaalaa.com
Experimental Study of Photoelectric Effect
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Photoelectric Effect and Wave-Particle Duality - MCQ [पृष्ठ ३६३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 20 Photoelectric Effect and Wave-Particle Duality
MCQ | Q 2 | पृष्ठ ३६३

संबंधित प्रश्‍न

Every metal has a definite work function. Why do all photoelectrons not come out with the same energy if incident radiation is monochromatic? Why is there an energy distribution of photoelectrons?


Is it always true that for two sources of equal intensity, the number of photons emitted in a given time are equal?


What is the speed of a photon with respect to another photon if (a) the two photons are going in the same direction and (b) they are going in opposite directions?


It is found that yellow light does not eject photoelectrons from a metal. Is it advisable to try with orange light or with green light?


If an electron has a wavelength, does it also have a colour?


Planck's constant has the same dimensions as


Let nr and nb be the number of photons emitted by a red bulb and a blue bulb, respectively, of equal power in a given time.


The work function of a metal is hv0. Light of frequency v falls on this metal. Photoelectric effect will take place only if


Calculate the momentum of a photon of light of wavelength 500 nm.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Calculate the number of photons emitted per second by a 10 W sodium vapour lamp. Assume that 60% of the consumed energy is converted into light. Wavelength of sodium light = 590 nm

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, find the force exerted by the light beam on the sphere.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Show that it is not possible for a photon to be completely absorbed by a free electron.


Find the maximum kinetic energy of the photoelectrons ejected when light of wavelength 350 nm is incident on a cesium surface. Work function of cesium = 1.9 eV

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The work function of a metal is 2.5 × 10−19 J. (a) Find the threshold frequency for photoelectric emission. (b) If the metal is exposed to a light beam of frequency 6.0 × 1014 Hz, what will be the stopping potential?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Find the maximum magnitude of the linear momentum of a photoelectron emitted when a wavelength of 400 nm falls on a metal with work function 2.5 eV.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The electric field associated with a light wave is given by  `E = E_0 sin [(1.57 xx 10^7  "m"^-1)(x - ct)]`. Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9 eV.


In the case of photoelectric effect experiment, explain the following facts, giving reasons.
The photoelectric current increases with increase of intensity of incident light.


In photoelectric effect, the photoelectric current started to flow. This means that the frequency of incident radiations is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×