Advertisements
Advertisements
प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(2)/x`, g(x) = 2x2 – 1
उत्तर
f(x) = `(2)/x`, g(x) = 2x2 – 1
fog = f[g(x)]
= f(2x2 – 1)
= `(2)/(2x^2 - 1)`
gof = g[f(x)]
= `g(2/x)`
= `2(2/x)^2 - 1`
= `2 xx 4/x^2 - 1`
= `8/x^2 - 1`
fog ≠ gof
APPEARS IN
संबंधित प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = 3 + x, g(x) = x – 4
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = 4x2 – 1, g(x) = 1 + x
Find the value of k, such that fog = gof
f(x) = 2x – k, g(x) = 4x + 5
Find k, if f(k) = 2k – 1 and fof(k) = 5
If f(x) = x2 – 1. Find fofof
If f : R → R and g : R → R are defined by f(x) = x5 and g(x) = x4 then check if f, g are one-one and fog is one-one?
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x – 1, g(x) = 3x + 1 and h(x) = x2
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x2, g(x) = 2x and h(x) = x + 4
Multiple choice question :
If f(x) = 2x2 and g(x) = `1/(3x)`, then fog is
Multiple choice question :
If g = {(1, 1), (2, 3), (3, 5), (4, 7)} is a function given by g(x) = αx + β then the value of α and β are