Advertisements
Advertisements
प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = x – 6, g(x) = x2
उत्तर
f(x) = x – 6, g(x) = x2
fog = fog(x)
= f(g(x))
fog = f(x)2
= x2 – 6
gof = gof(x)
= g(x – 6)
= (x – 6)2
= x2 – 12x + 36
fog ≠ gof
APPEARS IN
संबंधित प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(2)/x`, g(x) = 2x2 – 1
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(x + 6)/3`, g(x) = 3 – x
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = 4x2 – 1, g(x) = 1 + x
Find the value of k, such that fog = gof
f(x) = 2x – k, g(x) = 4x + 5
If f(x) = 2x – 1, g(x) = `(x + 1)/(2)`, show that fog = gof = x
If f(x) = x2 – 1. Find fofof
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x2, g(x) = 2x and h(x) = x + 4
Multiple choice question :
If f(x) = 2x2 and g(x) = `1/(3x)`, then fog is
Multiple choice question :
Let f and g be two function given by f = {(0, 1), (2, 0), (3, – 4), (4, 2), (5, 7)} g = {(0, 2), (1, 0), (2, 4), (– 4, 2), (7, 0) then the range of fog is
If f(x)= x2, g(x) = 3x and h(x) = x – 2 Prove that (fog)oh = fo(goh)