Advertisements
Advertisements
प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = 4x2 – 1, g(x) = 1 + x
उत्तर
f(x) = 4x2 – 1, g(x) = 1 + x
fog = f[g(x)]
= 4(1 + x)
= 4(1 + x)2 – 1
= 4[1 + x2 + 2x] – 1
= 4 + 4x2 + 8x – 1
= 4x2 + 8x + 3
gof = g[f(x)]
= g(4x2 – 1)
= 1 + 4x2 – 1
= 4x2
fog ≠ gof
APPEARS IN
संबंधित प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(2)/x`, g(x) = 2x2 – 1
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(x + 6)/3`, g(x) = 3 – x
Find the value of k, such that fog = gof
f(x) = 3x + 2, g(x) = 6x – k
If f(x) = x2 – 1, g(x) = x – 2 find a, if gof(a) = 1
Find k, if f(k) = 2k – 1 and fof(k) = 5
If f(x) = x2 – 1. Find fof
If f(x) = x2 – 1. Find fofof
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x – 1, g(x) = 3x + 1 and h(x) = x2
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x2, g(x) = 2x and h(x) = x + 4
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x – 4, g(x) = x2 and h(x) = 3x – 5