Advertisements
Advertisements
प्रश्न
Verify that the numbers given along side of the cubic polynomials are their zeroes. Also verify the relationship between the zeroes and the coefficients.
`2x^3 + x^2 – 5x + 2 ; 1/2, 1, – 2`
उत्तर
p(x) = 2x3 + x2 - 5x + 2
Zeroes for this polynomial are 1/2, 1, -2
p(1/2) = `2(1/2)^3+(1/2)^2-5(1/2)+2`
= `1/4+1/4-5/2+2`
=0
p(1) = 2 x 13 + 12 - 5 x 1 + 2
= 0
p(-2) = 2(-2)3 + (-2)2 - 5(-2) + 2
= -16 + 4 + 10 + 2 = 0
Therefore, 1/2, 1, and −2 are the zeroes of the given polynomial.
Comparing the given polynomial with ax3 + bx2 + cx + d we obtain a = 2, b = 1, c = −5, d = 2
We can take α = 1/2, β = 1, y = -2
α + β + γ = `1/2+1+(-2) = -1/2 = (-b)/a`
αβ + βγ + αγ = `1/2xx1+1(-2)+1/2(-2)=(-5)/2 = c/a`
αβγ = `1/2xx1xx(-2) = (-1)/1=(-(2))/2=(-d)/a`
Therefore, the relationship between the zeroes and the coefficients is verified.
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`p(x) = x^2 + 2sqrt2x + 6`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α2β + αβ2
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
If one zero of the quadratic polynomial f(x) = 4x2 − 8kx − 9 is negative of the other, find the value of k.
Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.
If (x+a) is a factor of the polynomial `2x^2 + 2ax + 5x + 10`, find the value of a.
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
If all three zeroes of a cubic polynomial x3 + ax2 – bx + c are positive, then at least one of a, b and c is non-negative.
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.